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Abstract 
  
This dissertation investigates the application of Random Matrix Theory (RMT) to the 
analysis of stock market behavior in high-dimensional statistical settings. As financial 
markets generate increasingly large and complex datasets, traditional statistical tools often 
fail to capture the true underlying correlations between assets, especially when the number of 
variables exceeds the number of observations common scenario in modern finance. RMT 
offers a robust mathematical framework for distinguishing genuine information from random 
noise in large correlation matrices. By analyzing the eigenvalue spectrum of empirical 
correlation matrices derived from asset return data, this study identifies deviations from the 
theoretical predictions of RMT, which often correspond to meaningful market signals or 
latent factors. The research explores both theoretical and empirical dimensions. On the 
theoretical side, it examines the implications of the Marčenko–Pastur law and the behavior of 
eigenvalues in finite samples. On the empirical side, RMT-based filtering techniques apply to 
real-world financial datasets to enhance portfolio optimization, reduce estimation risk, and 
improve the stability of financial models under high-dimensional constraints. The findings 
demonstrate that RMT, when integrated with modern statistical learning techniques, provides 
a powerful approach for financial modeling, especially in contexts involving large asset 
universes and limited time series data. This study contributes to the growing body of 
literature that positions RMT as a cornerstone methodology in high-dimensional finance and 
paves the way for further interdisciplinary research at the intersection of statistical physics, 
econometrics, and machine learning. 
  
Key words:( Random matrix theory (RMT) , Large data matrices ,High-dimensional 
statistics) 

1. Introduction 
 
The advent of big data in finance has introduced complexities that traditional statistical 
methodologies struggle to address. Financial datasets now encompass thousands of assets 
observed over limited time frames, leading to issues such as overfitting and multicollinearity. 
High-dimensional statistics, concerned with the analysis of where the number of variables p 
approaches or exceeds the sample size n, necessitates new analytical tools. Random Matrix 
Theory, with its roots in quantum physics, has shown promise in resolving such issues by 
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offering probabilistic insights into the behavior of large random matrices. This research aims 
to harness the theoretical rigor and practical adaptability of RMT to enhance our 
understanding of stock market correlations and their implications. 
 
1.1 Literature Review 
Emerging in the 1950s, the theory of large-dimensional random matrices was initially 
developed to address specific questions in mathematical physics. Over time, it has grown into 
an independent and rapidly evolving branch of mathematics, with extensive applications in 
various scientific disciplines, including the study of disordered quantum systems, number 
theory, econometrics, and biological networks. By the 1990s, this theory had found 
significant applications in signal processing and communications. More recently, it has 
become increasingly relevant in the field of learning theory. 

The foundational idea behind random matrix theory can be traced back to Eugene Wigner in 
the 1950s. While analyzing the energy spectra of heavy atomic nuclei, Wigner proposed 
modeling the (unknown) Hamiltonian operator—which governs the quantum states of such 
systems—as a large random matrix with a simple and generic structure. Specifically, he 
considered a real symmetric matrix 𝑋 = [𝑥𝑖𝑗] of dimension 𝑁𝑁 × 𝑁𝑁, where the entries 𝑥𝑖𝑗 are 
independent and identically distributed (i.i.d.) random variables, subject to symmetry, with 
zero mean and unit variance. 

The energy levels of the nucleus correspond to the eigenvalues {𝜆1, … , 𝜆𝑁} of the scaled 
matrix 𝑁𝑁−1/2𝑋. While the specific distribution of these eigenvalues depends on the 
distribution of the entries 𝑥𝑖𝑗, Wigner demonstrated that in the limit as 𝑁𝑁 → ∞, the global 
spectral distribution becomes independent of the specific distribution of the entries—a 
phenomenon known as universality, analogous to the law of large numbers in probability 
theory. 

To formalize this, Wigner introduced the empirical spectral distribution 𝜇𝑁 = 1
𝑁
∑ 𝛿𝜆𝑖
𝑁
𝑖=1 , 

which he proved converges almost surely to a deterministic probability distribution known as 
the semicircle law, supported on the interval [−2,2] [ 1 ]. 

A decade later, Marchenko and Pastur introduced a second class of random matrix models, 
which have found even broader applications than Wigner’s model, particularly in statistics 
and signal processing. The simplest model they examined is the Gram matrix 𝛴 = 1

𝑛
𝑋𝑋∗, 

where 𝑋 ∈ ℂ𝑁×𝑛 is a random matrix with i.i.d. entries that are centered and have unit 
variance, and 𝑋∗ denotes the conjugate transpose of 𝑋. 

In the case where 𝑁𝑁 is fixed and 𝑛𝑛 → ∞, the law of large numbers implies that 𝛴 converges 
almost surely to the identity matrix 𝐼𝑁, and hence its spectral distribution 𝜇𝑁 converges 
almost surely to the Dirac delta measure at 1, denoted 𝛿1. 
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However, Marchenko and Pastur focused on a 
more intricate asymptotic regime where both 
𝑁𝑁 and 𝑛𝑛 tend to infinity such that the ratio 
𝑁𝑁/𝑛𝑛 → 𝑐 > 0. In this setting, although 𝛴 still 
converges element-wise to 𝐼𝑁, its spectral 
behavior changes significantly. The empirical 
spectral distribution 𝜇𝑁 now converges almost 
surely to a new deterministic distribution—
known as the Marchenko–Pastur law. This 
distribution is supported on the interval 

[�1 − √𝑐�
2

, �1 + √𝑐�
2

] within [0,∞), and it has an explicit analytical expression for its 
density function. [ 2 ] 

Just as with Wigner's model, the convergence to the Marchenko–Pastur law is universal, 
meaning it holds irrespective of the precise distribution of the entries of 𝑋. 

Since the pioneering works of Wigner and Marchenko–Pastur, a wide variety of random 
matrix models have been developed and analyzed, further enriching this vibrant and 
multidisciplinary field of study. 

 
 

 
 
 
 
 
 
 
 
 
 
FIGURE 1 – Realization of eigenvalues (vertical lines) and limiting density (solid curve) for 
the Wigner model.N = 100. 
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FIGURE 2 – Realization of eigenvalues (vertical lines) for a Marchenko-Pastur model, N = 
100, n = 300. Limiting density (solid curve) for c = 1/3. 

In general, correlated, non-centered random matrix models, as well as their various 
combinations, exhibit a key structural property: they possess O(N²) degrees of freedom. That 
is, the 𝑁𝑁 × 𝑁𝑁 matrix under study typically involves approximately 𝒪(𝑁𝑁2) independent 
random variables. 

Mathematically, we denote the spectral measure associated with the matrix as:𝜇𝑁 =
1
𝑁
∑ 𝛿𝜆𝑖
𝑁
𝑖=1  

where 𝜆𝑖 are the eigenvalues of the matrix, and 𝛿𝜆𝑖 denotes the Dirac delta measure at 𝜆𝑖. 

The primary objective in the study of such models is to analyze the tight convergence (or 
weak convergence in distribution) of the spectral measure 𝜇𝑁 as 𝑁𝑁 → ∞. This analysis 
emphasizes the global (macroscopic) behavior of the spectrum, rather than the local 
(microscopic) fluctuations of individual eigenvalues 𝜆𝑖. 

Going further, Wigner was also interested in the microscopic behavior of the eigenvalues of a 
large random matrix. Because of the interest in the fine study of the separations between the 
states of the underlying quantum system, the determination of the law of the spacings 
between the eigenvalues is indeed a major question [ 3 ]. 
 
During the 1960s, Gaudin, Mehta, and Dyson provided substantial support for the semicircle 
law, demonstrating that the typical spacing between eigenvalues of a Gaussian Wigner matrix 
within the interval [−2, 2] is on the order of 1/N. At this microscopic scale, they showed that 
the asymptotic distribution of eigenvalue fluctuations follows what is known as the sine 
kernel law. 

Moreover, it was discovered in the early 1990s that the largest eigenvalue of a Gaussian 
random matrix exhibits typical spacing of order 𝑁𝑁−2/3. At this refined scale, the asymptotic 
behavior of the fluctuations is described by the Tracy–Widom distribution, which 
characterizes the universal limiting law of the largest eigenvalues in such ensembles. 
Comparable results have also been derived for the Gaussian sample covariance matrix 
defined as 1

𝑛
𝑋𝑋∗, where 𝑋 consists of independent Gaussian entries. In this context, the 

largest eigenvalue similarly converges in distribution to the Tracy–Widom law under 
appropriate normalization. 
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Given these foundational results in the Gaussian setting, a natural question arose: Do these 
phenomena persist beyond Gaussian matrices? This led to the long-standing Wigner–Dyson–
Mehta conjecture, which posited that the microscopic behavior of eigenvalues—just like their 
macroscopic behavior—is universal. That is, it depends only on the general class of the 
matrix model (e.g., Wigner, Marchenko–Pastur, or correlated ensembles) and not on the 
specific distribution of the entries. 
This conjecture was rigorously proven in the latter half of the 2000s by Erdős, Schlein, Yau, 
and Yin. Parallel and complementary contributions were also made by Tao and Vu, further 
solidifying the universality of eigenvalue statistics in large-dimensional random matrix 
theory. 

An important and application-relevant extension of random matrix theory involves finite-rank 
perturbations of large random matrices. Consider again the model 𝛴 = 1

𝑛
𝑋𝑋∗, and now 

suppose that 𝑋 ∈ ℂ𝑁×𝑛 is of the form 𝑋 = 𝐴𝐴 + 𝑊𝑊, where 𝑊𝑊 is a random matrix with 
independent and identically distributed (i.i.d.), centered entries of unit variance and finite 
fourth moment, and 𝐴𝐴 is a deterministic matrix of rank one. 

It is noteworthy that, in the absence of the deterministic component 𝐴𝐴, none of the 
eigenvalues of 𝛴 deviates from the support of the Marchenko–Pastur distribution in the high-
dimensional limit. Furthermore, the inclusion of 𝐴𝐴 does not affect the macroscopic behavior 
of the eigenvalue distribution of 𝛴, owing to its low rank. That is, the spectral measure of 𝛴 
still converges to the Marchenko–Pastur law in the limit as 𝑁𝑁,𝑛𝑛 → ∞. 

However, a phase transition phenomenon may occur: an outlier eigenvalue can emerge 
outside the support of the limiting distribution. Specifically, when 1

√𝑛
∥ 𝐴𝐴 ∥ exceeds a critical 

threshold, the largest eigenvalue of 𝛴 separates from the bulk and converges to a 
deterministic value that can be explicitly characterized (see Figure 4). Conversely, if the 
threshold is not surpassed, the largest eigenvalue remains at the right edge of the support of 
the Marchenko–Pastur law [ 4 ]. 

Up to this point, all random matrices considered in this discussion have been either Hermitian 
or symmetrical. However, an important branch of random matrix theory is devoted to the 
spectral analysis of non-Hermitian (or non-symmetric) matrices. This area of study emerged 
later than the corresponding investigations of Hermitian matrices. 

In general, the eigenvalues of a square matrix exhibit greater sensitivity to perturbations 
compared to its singular values. Even a minor perturbation can cause significant changes in 
the eigenvalues, whereas the singular values tend to be more robust and undergo only limited 
variation. Random matrix theory reveals that for non-Hermitian matrices with 𝑂(𝑁𝑁2) degrees 
of freedom, the spectral sensitivity to perturbations is significantly mitigated. That is, the 
random nature and high dimensionality of such matrices contribute to stabilizing their 
spectral characteristics. 
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A foundational model in the theory of non-Hermitian random matrices involves the matrix 
𝑁𝑁−1/2𝑋, where 𝑋 = [𝑥𝑖𝑗] is a real or complex 𝑁𝑁 × 𝑁𝑁 matrix with independent and identically 
distributed (i.i.d.) entries, each centered and with unit variance. Since the eigenvalues of 
𝑁𝑁−1/2𝑋 are generally complex, the associated spectral measure is supported over the 
complex plane ℂ. 

A central result in this domain is that, regardless of the specific distribution of the 
entries 𝑥𝑖𝑗, the empirical spectral measure of 𝑁𝑁−1/2𝑋 converges almost surely to the 
uniform distribution on the unit disk in ℂ. This phenomenon is known as the circular law, 
and its proof has evolved over several decades, involving significant developments in 
probability theory, functional analysis, and complex analysis [ 5 ]. 

 
 
 
 
 
 
 
 
 

 
 
 
 
 
FIGURE 3–The eigenvalues corresponding to a realization of the matrix 𝑛𝑛

−1
�𝐴𝐴 +

𝑊𝑊��𝐴𝐴 + 𝑊𝑊�
∗
 are displayed alongside the Marchenko–Pastur law, for the parameters 

𝑁𝑁 = 100, 𝑛𝑛 = 300, with rank�𝐴𝐴� = 1, and ∥ 𝑛𝑛
−1/2

𝐴𝐴 ∥= 2. The figure clearly illustrates the 
appearance of an isolated (outlier (eigenvalue ,separated from the bulk of the spectrum.  

In the 1960s, Ginibre established the circular law for the case of complex Gaussian random 
matrices. Two decades later, Girko introduced a more general framework based on the notion 
of logarithmic potential and the technique known as Hermitization, enabling the extension of 
this result to a broader class of distributions. 
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Since then, the theory has advanced to encompass more complex statistical models beyond 
the basic i.i.d. framework, including localized distributions and finite-rank perturbations, 
even in the non-Hermitian setting. The growing relevance of large random matrix theory in 
modern statistics stems from the high dimensionality of data in contemporary applications. 
This includes contexts such as high-dimensional feature spaces in machine learning, large-
scale network inference, sensor arrays in distributed systems, and antenna arrays in fields like 
radio astronomy. 

The relevance of large random matrix theory in statistical inference arises from the practical 
limitations encountered when the number of observations 𝑛𝑛 in a statistical time series is not 
significantly larger than the series dimension 𝑁𝑁. This situation frequently occurs due to 
constraints on the observation period that are required to maintain the stationarity 
assumption. Under such conditions, the classical asymptotic framework—where 𝑁𝑁 is fixed 
and 𝑛𝑛 → ∞—becomes inadequate. A more realistic setting considers both 𝑁𝑁 and 𝑛𝑛 tending to 
infinity at comparable rates. 

To illustrate, consider a multivariate time series represented by a matrix 𝑌 ∈ ℂ𝑁×𝑛 of the 
form 𝑌 = 𝑅1/2𝑋, where 𝑋 ∈ ℂ𝑁×𝑛 is a matrix with independent and identically distributed 
(i.i.d.) centered entries of unit variance, and 𝑅 is a deterministic but unknown covariance 
matrix. In application areas such as antenna signal processing, econometrics, and others, a 
central objective is to develop inference procedures based on the eigenvalues or specific 
eigenspaces of the covariance matrix 𝑅. 

Traditional inference methods, designed under the assumption 𝑁𝑁 is fixed and 𝑛𝑛 → ∞, often 
fail to remain consistent under the high-dimensional asymptotic regime where 𝑁𝑁,𝑛𝑛 → ∞ 
jointly. One of the notable achievements of random matrix theory is the development of 
inference algorithms that retain consistency under this more realistic asymptotic scenario. 

Moreover, the scope of the theory extends beyond basic models such as 𝑌 = 𝑅1/2𝑋. Recent 
advancements have incorporated more sophisticated structures, including models for 
broadband antenna arrays and rational spectral representations characterized by systems of 
state equations [ 6 ]. 

Other research directions within the field have focused on inference for finite-rank 
perturbation models, particularly those of the form 𝑊𝑊 + 𝐴𝐴 (as previously discussed), where 
the primary information is encoded in the low-rank matrix 𝐴𝐴 and 𝑊𝑊 represents a "noise" 
matrix. Additionally, significant attention has been given to the development of robust 
estimation algorithms, such as "M-estimators," which are designed to be resistant to 
impulsive noise. These approaches aim to enhance the reliability and accuracy of statistical 
inference in the presence of outliers or heavy-tailed disturbances in the data. 

1.2 Data collection 
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For this study, 50 assets from the stock market were selected, with data spanning from 
September to December, collected at 5-minute intervals. In September, the data was retrieved 
from 10:00 AM to 5:05 PM, while in December, the final observation was made at 5:35 PM 
due to a change in the trading schedule to accommodate daylight saving time. As a result, 
each asset in September had 1,634 observations, while each asset in December had 1,656 
observations. The assets were randomly selected, with the only criterion being that each asset 
must have at least 1,000 observations in each month. 

Since the primary objective of this study is to analyze the correlation between assets during 
the trading day, only data from the market opening hours were considered. This ensures that 
the first value of each day, as provided by the Bloomberg system, is distinct from the last 
observation of the previous day, eliminating the risk of spurious correlation due to the 
absence of changes in the final log returns of each day. Furthermore, this approach allows for 
a more precise capture of potential relationships, particularly those stemming from high price 
fluctuations at the beginning of the trading day. 

Given that assets do not necessarily trade at every 5-minute interval and there may be gaps in 
the data, an adjustment was made to fill any missing values. Specifically, if the missing data 
corresponds to the first observation of the month, the next available price was used to replace 
it. For gaps occurring in the middle or at the end of the month, the previous data point was 
used to complete the missing value. 

 
2 Methodology 
 

This study adopts a quantitative methodology, leveraging high-frequency and daily return 
data from a diverse pool of equities across major financial markets. The data preprocessing 
involves the calculation of standardized log returns and the construction of correlation 
matrices for the selected asset pools. These correlation matrices are central to the analysis, 
which utilizes eigenvalue decomposition, allowing for the assessment of eigenvalue 
distributions and their alignment with theoretical models from Random Matrix Theory 
(RMT), particularly the Marčenko-Pastur law. This law defines the asymptotic behavior of 
eigenvalue distributions for large random matrices under the null hypothesis of randomness. 

Hypotheses 

• H1: The eigenvalue distributions of the correlation matrices will converge to the 
Marčenko-Pastur law in the limit of large 𝑁𝑁 and 𝑛𝑛, with the bulk of the eigenvalues 
being contained within the support of the Marčenko-Pastur distribution. 

• H2: The presence of financial market correlations will lead to deviations from the 
Marčenko-Pastur distribution, with the emergence of outliers or isolated eigenvalues, 
indicating a structured correlation beyond randomness. 
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• H3: The correlation matrices derived from high-frequency return data will exhibit 
more pronounced non-random structures compared to those derived from daily 
returns. 

Equations and Statistical Analysis 

The analysis is framed within the following mathematical model: 

1. Standardized Log Returns 

The log returns 𝑟𝑖,𝑡 for asset 𝑖 at time 𝑡 are defined as: 

𝒓𝒊,𝒕 = 𝐥𝐨𝐠 � 𝑷𝒊,𝒕
𝑷𝒊,𝒕−𝟏

�……………(1) 

where: 

• 𝑟𝑖,𝑡 is the log return of asset 𝑖 at time 𝑡, 
• 𝑃𝑖,𝑡 is the price of asset 𝑖 at time 𝑡, 
• 𝑃𝑖,𝑡−1 is the price of asset 𝑖 at the previous time period. 

2. Correlation Matrix 

The correlation matrix 𝐶 is computed as: 

𝑪 = 𝟏
𝒏
𝑿𝑿𝑻……………….(2) 

where: 

• 𝑋 is the matrix of standardized log returns with size 𝑁𝑁 × 𝑛𝑛 (N assets and n 
observations), 

• 𝐶 is the correlation matrix of the returns. 

3. Eigenvalue Decomposition 

The eigenvalues 𝜆𝑖 of the correlation matrix 𝐶 are obtained by solving the following 
equation: 

𝑪𝒗𝒊 = 𝝀𝒊𝒗𝒊…………….(3) 

where: 

• 𝑣𝑖 is the eigenvector corresponding to eigenvalue 𝜆𝑖, 
• 𝜆𝑖 are the eigenvalues of the correlation matrix 𝐶. 
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4. Marčenko-Pastur Law 

For large 𝑁𝑁 and 𝑛𝑛, the limiting distribution of eigenvalues for random matrices follows the 
Marčenko-Pastur law. The density function 𝜌(𝜆) of the eigenvalues is given by: 

𝝆(𝝀) = 𝟏
𝟐𝝅𝝈𝟐𝝀

�(𝝀+ − 𝝀)(𝝀 − 𝝀−)………….(4) 

where: 

• 𝜆+ = �1 + √𝑐�
2
 and 𝜆− = �1 − √𝑐�

2
 are the upper and lower bounds of the 

spectrum, 
• 𝜎2 is the variance of the returns (which can be set to 1 if returns are standardized), 
• 𝑐 = 𝑛

𝑁
 is the ratio of the number of assets to the number of observations. 

5. Bootstrapping for Robustness Check 

To assess the robustness of the eigenvalue distribution, a bootstrapping procedure can be 
employed. The procedure involves resampling with replacement from the returns data to 
generate multiple synthetic datasets. For each synthetic dataset, the correlation matrix and 
eigenvalues are recomputed. The confidence intervals for the eigenvalues are then estimated. 

Let the bootstrap sample be denoted as 𝑋(𝑏), where 𝑏 indexes the bootstrap iteration. The 
bootstrapped correlation matrix is computed as: 

𝑪(𝒃) = 𝟏
𝒏
𝑿(𝒃)�𝑿(𝒃)�

𝑻
…………..(5) 

Then, the eigenvalues 𝜆𝑖
(𝑏) for each bootstrap iteration are computed, and their distribution is 

used to form confidence intervals for the true eigenvalues. 

6. Kernel Density Estimation (KDE) 

To smooth the eigenvalue distribution and visualize the density, kernel density estimation 
(KDE) is applied to the eigenvalues. The KDE estimate 𝑓(𝜆) of the probability density 
function of the eigenvalues is given by: 

𝒇�(𝝀) = 𝟏
𝑵𝒉
∑ 𝑲𝑵
𝒊=𝟏 �𝝀−𝝀𝒊

𝒉
�………………(6) 

where: 

• 𝜆𝑖 are the eigenvalues, 
• 𝐾(⋅) is the kernel function (e.g., Gaussian kernel), 
• ℎ is the bandwidth parameter that controls the smoothness of the density estimate, 
• 𝑁𝑁 is the number of eigenvalues. 
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Additional tools such as kernel density estimation (KDE) and bootstrapping are employed to 
assess the robustness of the eigenvalue distributions, and a systematic filtering procedure is 
applied to eliminate noisy components, ensuring the refinement of the correlation structures. 
These steps contribute to verifying whether the empirical data adheres to theoretical 

predictions, providing 
insights into the underlying 
market dynamics. .[ 7 ] 

 

 

 

 

 

 

 

 

 

 

 

Figure 4 -  Share price over the observed period of time 

The equation you've provided represents the log return of an asset over a given time interval 
𝛥𝑡. Here's the refined version of the equation with some added context: 

Log Return for a Given Asset: For a given asset 𝑖, the return 𝑅𝑖(𝑡) over a time interval 𝛥𝑡 is 
defined as the logarithmic difference between the price of the asset at time 𝑡 + 𝛥𝑡 and the 
price at time 𝑡. Mathematically, it is expressed as: 

𝑹𝒊(𝒕) = 𝐥𝐧�𝑷𝒊(𝒕 + 𝜟𝒕)� − 𝐥𝐧�𝑷𝒊(𝒕)� (7) 

Where: 

• 𝑅𝑖(𝑡) is the log return of asset 𝑖 at time 𝑡, 
• 𝑃𝑖(𝑡) is the price of asset 𝑖 at time 𝑡, 
• 𝑃𝑖(𝑡 + 𝛥𝑡) is the price of asset 𝑖 at time 𝑡 + 𝛥𝑡, 
• ln denotes the natural logarithm. 
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This equation gives the return of asset 𝑖 over the time period from 𝑡 to 𝑡 + 𝛥𝑡, which is 
commonly used in financial models to calculate the change in asset price, accounting for 
compounding. 

Figure 3 illustrates the time series of the price variation of the  asset of the company 
Petrobrás, throughout the month of 
September. After applying 
equation 1, the time variation of 
the price of this asset for the 
referred month was obtained, 
represented in Figure 2. 
Figure 2. Variation in the price of  
shares over the observed period of 
time. 
 
In probability theory and statistics, 
the correlation between two 
variables, in this case the returns 
for two stocks, is a measure of the 
strength and direction of the linear 
relationship between them. Figure 

3 shows the return on the  stock as a function of the return on the PETR3 stock for 
the same period of time.[ 8 [  

 
 
Figure 3. Dispersion of the 
variation in the price of  stock as a 
function of the variation in the 
price of PETR3 stock. 
 

It is evident from the scatter plot that 
the relationship between the returns 
of each pair of assets exhibits a 
significant linear characteristic. This 
is particularly expected in the case of 
two assets belonging to the same 
company. Such a relationship can be 
quantified using the correlation 
coefficient between the two 
variables, which is expressed by the 
following equation: 
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𝑐𝑖𝑗 = corr �𝑅𝑖(𝑡),𝑅𝑗(𝑡)� =
𝔼[(𝑅𝑖(𝑡) − 𝜇𝑖)�𝑅𝑗(𝑡) − 𝜇𝑗�]

𝜎𝑖 ⋅ 𝜎𝑗
(8) 

Where: 

• 𝑐𝑖𝑗 is the correlation coefficient between assets 𝑖 and 𝑗, 
• 𝑅𝑖(𝑡), 𝑅𝑗(𝑡) are the instantaneous returns of the assets at time 𝑡, 
• 𝜇𝑖, 𝜇𝑗 are the expected (mean) returns of each asset, 
• 𝜎𝑖, 𝜎𝑗 are the standard deviations of the returns, 
• 𝔼[⋅] denotes the expectation operator. 

Due to its construction, the correlation coefficient is bounded within the interval (−1,1), 
where: 

• 𝑐𝑖𝑗 = 1 indicates a perfect positive linear correlation, 
• 𝑐𝑖𝑗 = −1 indicates a perfect negative linear correlation, 
• 𝑐𝑖𝑗 = 0 indicates no linear correlation between the variables. 

In the case of the two Petrobras assets, a strong positive correlation was expected based on 
the scatter plot analysis. Empirically, this expectation is confirmed as the correlation 
coefficient between their returns is: 

𝑐𝑖𝑗 = 0.8453…………………..……..(9) 

In practice, when dealing with a portfolio containing 𝑁𝑁 assets, it is essential to compute the 
pairwise correlation coefficients for all combinations of asset pairs. A natural and effective 
way to represent these relationships is through the correlation matrix, defined as: 

𝐂𝑁×𝑁 = �

𝑐1,1 𝑐1,2 ⋯ 𝑐1,𝑁
𝑐2,1 𝑐2,2 ⋯ 𝑐2,𝑁

⋱
𝑐𝑁,1 𝑐𝑁,2 ⋯ 𝑐𝑁,𝑁

�................................(10) 

This matrix possesses the following properties: 

• Symmetry: 𝑐𝑖𝑗 = 𝑐𝑗𝑖, 
• Unit diagonal elements: 𝑐𝑖𝑖 = 1 for all 𝑖, reflecting the perfect correlation of an asset 

with itself. 

For a portfolio comprising 𝑁𝑁 assets, the correlation matrix 𝐂 ∈ ℝ𝑁×𝑁 is defined as a square 
matrix with 𝑁𝑁 rows and 𝑁𝑁 columns, where each element 𝑐𝑖,𝑗 represents the Pearson 
correlation coefficient between the returns of asset 𝑖 and asset 𝑗. This matrix is symmetric, 
which implies: 
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𝑐𝑖,𝑗 = 𝑐𝑗,𝑖, ∀𝑖, 𝑗 ∈ {1,2, . . . ,𝑁𝑁}………………………………..(11) 

Furthermore, the main diagonal of the matrix consists of unit values: 

𝑐𝑖,𝑖 = 1, ∀𝑖……………………..(12) 

This arises from the fact that each asset is perfectly (i.e., maximally) correlated with itself. 

Understanding and mapping the correlation structure among multiple assets is fundamental to 
modern portfolio theory, particularly in optimizing the trade-off between risk and return. 
However, empirical correlation coefficients are influenced by both systematic 
(deterministic) and random (noise) components. Disentangling these components is non-
trivial and requires advanced statistical tools. 

Spectral Analysis of the Correlation Matrix 

A powerful method to analyze the internal structure of the correlation matrix and extract 
meaningful economic signals is through eigenvalue decomposition. The correlation matrix 𝐂 
can be decomposed as: 

𝐂 = 𝐕𝚲𝐕⊤……………………..(13) 

Where: 

• 𝚲 = diag(𝜆1,𝜆2, . . . , 𝜆𝑁) is a diagonal matrix containing the eigenvalues 𝜆𝑖 of 𝐂, 
• 𝐕 = [𝐯1, 𝐯2, . . . , 𝐯𝑁] is the matrix whose columns are the corresponding eigenvectors 

𝐯𝑖, 
• 𝐕⊤ denotes the transpose of 𝐕. 

The eigenvalues and eigenvectors of the correlation matrix have widespread applications in 
various disciplines, including statistics, physics, and financial economics. In the context of 
portfolio management, they can be utilized to: 

• Identify the most influential factors driving asset co-movements, 
• Reduce portfolio dimensionality (via Principal Component Analysis), 
• Distinguish between market-wide effects and asset-specific behavior. 

This spectral decomposition enables a more nuanced understanding of systemic risk and 
hidden market structures that are not directly observable through raw correlation values 
alone. [ 10 ] 

The eigenvectors of a square matrix 𝐀 ∈ ℝ𝑁×𝑁 are non-zero vectors 𝐯𝑘 that satisfy the 
following linear transformation condition: 

𝐀𝐯𝑘 = 𝜆𝑘𝐯𝑘 (14) 

Where: 
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• 𝐯𝑘 is the eigenvector associated with the transformation, 
• 𝜆𝑘 ∈ ℝ is the corresponding eigenvalue. 

This relation implies that under the linear transformation defined by matrix 𝐀, the eigenvector 
𝐯𝑘 preserves its direction and is only scaled by the eigenvalue 𝜆𝑘. This property is essential 
for the analysis of stability and structure in various systems—whether physical, biological, 
or economic. 

The eigenvalues of a matrix are obtained by solving the characteristic equation: 

det(𝐀 − 𝜆𝑘𝐈) = 0 (15) 

Where: 

• det(⋅) denotes the determinant, 
• 𝐈 is the identity matrix of the same dimension as 𝐀, 
• 𝜆𝑘 are the roots of the characteristic polynomial and thus the eigenvalues of 𝐀. 

When applied to the correlation matrix 𝐂 of asset returns, eigenvalue decomposition 
becomes a powerful tool for isolating meaningful market dynamics. The correlation matrix 
inherently contains both deterministic components, which reflect genuine relationships 
among asset returns, and random components, which arise from data limitations and 
stochastic fluctuations. 

There are two main sources of randomness in the eigenvalues of empirical correlation 
matrices: 

1. Non-stationarity of market conditions: Financial correlations evolve over time, 
meaning that observed values may not represent stable, long-term relationships. 

2. Finite sample effects: Since real-world datasets have limited length, estimations of 
correlation coefficients are contaminated by statistical noise, introducing spurious 
fluctuations. 

Therefore, it is critical to separate signal from noise by identifying which eigenvalues 
reflect real economic structure and which are dominated by randomness. One prominent 
method to achieve this is the Random Matrix Theory (RMT), which provides statistical 
benchmarks for distinguishing informative eigenvalues from those expected under a purely 
random correlation structure. .[ 11 ] 

The central concept behind Random Matrix Theory (RMT) is the investigation of the 
statistical properties of matrices whose elements are randomly generated. This approach 
facilitates the derivation of analytical bounds, probability distributions, and structural 
characteristics for the eigenvalues of a generic random matrix 𝐑. 
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To apply RMT to a financial portfolio consisting of 𝑁𝑁 assets, the method begins by 
generating 𝑁𝑁 synthetic return time series, each with 𝐿 observations. These synthetic series are 
sampled from a normal distribution with: 

• Mean = 0 
• Standard deviation = 1 

To ensure comparability between the random matrix and the empirical return matrix 
derived from actual market data, each random series must be adjusted to match the statistical 
characteristics of its corresponding real-world asset. For an asset 𝑖 with empirical mean 𝜇𝑖 
and standard deviation 𝜎𝑖, the modified random return series 𝑟𝑚(𝑡) is computed as: 

𝑟𝑚(𝑡) = 𝜇𝑖 + 𝜎𝑖 ⋅ 𝑟(𝑡) (16) 

Where: 

• 𝑟(𝑡) is the raw randomly generated return at time 𝑡, 
• 𝑟𝑚(𝑡) is the adjusted random return used for matrix construction. 

From the 𝑁𝑁 modified random time series, one can compute the pairwise correlation 
coefficients, forming a square correlation matrix 𝐇 ∈ ℝ𝑁×𝑁, defined as: 

𝐇𝑁×𝑁 =

⎣
⎢
⎢
⎡
ℎ1,1 ℎ1,2 ⋯ ℎ1,𝑁
ℎ2,1 ℎ2,2 ⋯ ℎ2,𝑁

⋱
ℎ𝑁,1 ℎ𝑁,2 ⋯ ℎ𝑁,𝑁⎦

⎥
⎥
⎤

(17) 

This matrix is analogous to the empirical correlation matrix of actual asset returns, and it 
allows the application of spectral analysis techniques. 

Once the random correlation matrix 𝐇 is constructed, its eigenvalues 𝜆 and eigenvectors can 
be computed. The statistical distribution of the eigenvalues derived from such a random 
matrix is described by the Marchenko–Pastur distribution: 

𝑃RMT(𝜆) =
𝑄

2𝜋
⋅
�(𝜆+ − 𝜆)(𝜆 − 𝜆−)

𝜆
 for 𝜆 ∈ [𝜆−, 𝜆+] (18) 

Where: 

• 𝑄 = 𝐿/𝑁𝑁 is the ratio of time series length to the number of assets, 
• 𝜆− and 𝜆+ are the theoretical bounds of the eigenvalue spectrum, defined as: 

𝜆± = 1 +
1
𝑄

± 2�
1
𝑄

(19) 
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These bounds represent the expected eigenvalue limits under purely random correlations. 
Any eigenvalue outside this range indicates the presence of non-random (informative or 
structural) market effects. [ 12 ] 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5. Theoretical distribution of eigenvalues of a random matrix. 
 
Through this rule, it can be considered that eigenvalues outside this range should 
not be related to the random behavior of the correlation matrix but rather due to 
intrinsic characteristics of the system they represent. These limits were calculated 
considering the data from September and December and are available in Table 1. 
 
 
 
 
 
 
 
 
Table 1. Theoretical bounds for the eigenvalues of a random correlation matrix. 
 

Month λ⁺ (Upper Bound) λ⁻ (Lower Bound) 
September 1.3806 0.6807 

December 1.3778 0.6826 
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These values are likely derived from the Random Matrix Theory (RMT) distribution 
bounds: 

𝜆± = 1 + 1
𝑄

± 2�1
𝑄

……………………….(20) 

Where 𝑄 = 𝐿
𝑁

, with: 

• 𝐿: Number of observations in each time series 
• 𝑁𝑁: Number of assets 

These bounds are used to distinguish eigenvalues containing random information (within 
the interval [𝜆−, 𝜆+]) from eigenvalues potentially containing market (deterministic) 
information (those outside this interval). That is: 

• Eigenvalues within [𝜆−,𝜆+] → likely noise 
• Eigenvalues outside [𝜆−,𝜆+] → potentially informative 

Observations:  
• The bounds are very similar across the two months, suggesting that the ratio 𝑄 = 𝐿

𝑁
 

hasn't changed significantly. 
• Small shifts in λ⁺ and λ⁻ may be due to slight changes in market conditions or in the 

length of the time series. 

To ensure the robustness and generalizability of the findings obtained in this section, a total 
of 100 random correlation matrices were simulated. This extensive simulation enabled 
validation of the relationships derived from random matrix theory, even when dealing with a 
relatively large number of eigenvalues (in this case, 5000). The observed results confirmed 
that the behavior of eigenvalues and eigenvectors from random matrices remains consistent 
under such conditions. [ 13 ] 

The scalar product (dot product) is a fundamental operation between two vectors, which 
can be calculated using the following expression: 

𝑢�⃗ ⋅ �⃗� =∣ 𝑢�⃗ ∣⋅∣ �⃗� ∣⋅ cos(𝜃) (21) 

Where: 

• 𝑢�⃗  and �⃗� are vectors in ℝ𝑛, 
• ∣ 𝑢�⃗ ∣ and ∣ �⃗� ∣ are the Euclidean norms (magnitudes) of the vectors, 
• 𝜃 is the angle between them. 
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This operation can be interpreted geometrically as the projection of vector 𝑢�⃗  onto vector �⃗�. 
Consequently, the angle 𝜃 formed between these two vectors can be extracted by rearranging 
Equation (10), yielding: 

𝜃 = cos−1 �
𝑢�⃗ ⋅ �⃗�

∣ 𝑢�⃗ ∣⋅∣ �⃗� ∣
� (22) 

In the special case where the vectors point in the same direction, the angle 𝜃 = 0, and the 
scalar product reaches its maximum value, equal to the product of the two magnitudes. 

Based on this mathematical framework, one can evaluate the temporal stability of the 
eigenvectors of the correlation matrix by examining the angle between the eigenvectors 
computed at two different time points (e.g., across two consecutive months). If the market 
structure remains relatively unchanged, the angle between corresponding eigenvectors 
from one month to the next is expected to be close to zero. 

This analytical method provides a quantitative measure of how the direction and 
orientation of the eigenvectors of the correlation matrix evolve over time. In particular, it 
serves as an indicator of the stability or variability in the underlying economic or financial 
dynamics represented by the correlation structure of asset returns. [ 14 ] 

3 Results 
 
In this section, the analysis will begin with the month of September, based on the 
extracted data as previously described. Utilizing the 100 simulated random 
correlation matrices, Figure 5 was generated to illustrate the distribution of 

eigenvalues derived from the random 
matrices. To facilitate a meaningful 
visual comparison, the scale of Figure 
5 was adjusted to match that of Figure 
6, which depicts the eigenvalue 
distribution obtained from the 
empirical correlation matrix 
constructed using actual return data. 
This comparison aims to identify 
deviations from the random matrix 
behavior, thereby isolating eigenvalues 
that potentially carry economically 
meaningful information. 
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Figure 5. Distribution of eigenvalues                    
Figure 6. Distribution of eigenvalues  
of the simulated random matrix for 
September.       of September data.  
 
Following the methodology, the minimum (
入) and maximum (1) values of the 
probability distribution function are given by 
equation 9, taking into account that in this 
study (month of September) there are 50 
assets and 1634 observations for each, 
that is, n=50 and T=1635. Thus, we have 
the following relationship:[ 15 ] 
λ- = 0.6807 e λ+ = 1.3806 
 
These limits were then used to test the agreement of the eigenvalues of the real 
series with the Random Matrix Theory. When obtaining the largest eigenvalues for 
the real matrix, λ50 = 8.141.1 , λ49 = 2.060 and λ50 = 1.812, it is observed that none of 
them belong to the interval (they are all greater than the upper limit). Regarding the 3 
smallest eigenvalues, they are: λ₁ = 0.074, λ₁ = 0.131 and λ3 =0.352. These values 
are also all located below the lower limit found ,Another observation to be made is 
that the largest eigenvalue of the real matrix is about 5 times greater than the upper 
limit of the eigenvalues of the random matrix and also that 46% of the eigenvalues 
fall outside the range obtained, with 36% being lower than the minimum limit and 
10% higher than the maximum limit. 
 
Analyzing the largest eigenvalue of the September portfolio (λ50 = 8.14), we have the 
following eigenvector graph: 

 
Figure 7. Eigenvectors of the largest eigenvalue of the September portfolio. 
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As can be seen, the portfolio representing the highest eigenvalue is purchased in 
almost all assets. This shows that the highest eigenvalue expresses a risk close to 
market risk. This eigenvector relates assets to the economic scenario. From it, it is 
possible to obtain an idea of how assets are influenced by shocks that impact the 
economy as a whole. 
 
In this case, it can be observed that the company ""Transmissora Aliança de Energia 
Elétrica S.A." (TAEE11) is the least affected by economic shocks. From graph 1 it is 
possible to see that it is the company least correlated with the other assets. Thus, 
assuming that economic shocks tend to affect practically all sectors and all 
companies on the stock exchange and observing that TAEE11 has a low correlation 
with all other assets, it can be concluded that, regardless of the economic shock , its 
share prices will be the least affected.[ 16 ] 
 
 On the other hand, it can also be observed that Petrobras, represented in the 
portfolio by both PETR3 and , is the company that is most susceptible to market risk 
,Now analyzing the eigenvectors resulting from the second and third largest 
eigenvalues (λ49 = 2.06 and λ 48 = 1.81 respectively), we have the eigenvectors 
represented in figure 8 and figure 9, respectively. 

 
 
Figure 8. Eigenvectors of the second largest eigenvalue of the September portfolio. 

 
Figure 9. Eigenvectors of the third largest eigenvalue of the September portfolio. 
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As the eigenvalues decrease, the eigenvectors begin to represent portfolios with 
assets with similar correlations. For example, considering graph 3, it is possible to 
observe that the 4 most sold stocks are Vale (VALE3 and VALE5), Usiminas 
(USIM5) and Companhia Siderúrgica Nacional (CSNA3), which have a high 
correlation with each other and are all from the same sector, basic materials.  
 the random matrix test is performed for the American stock market, it is possible to 
separate eigenvalues that result in eigenvectors that represent portfolios of single 
segments. Below is the graph of this study showing the relationship between 
eigenvalues and segments of the American market [ 17 ]. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 10. Eigenvalues and segments of the American market [2]. 
 
Comparing now the eigenvectors resulting from the three largest eigenvalues of the 
random matrix (λ = 1.30, λ = 1.32 and A = 1.36 respectively) we have the following 
graphs: 

 
Figure 11. Eigenvectors of the largest eigenvalue of the random matrix portfolio. 
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Figure 12. Eigenvectors of the second largest eigenvalue of the random matrix 
portfolio. 
 

 
Figure 13. Eigenvectors of the third largest eigenvalue of the random matrix portfolio. 
 
As can be seen, these eigenvectors are not capable of representing market risk. In 
fact, in Figure 12, the portfolio buys VALE3 and sells VALES, which would reduce 
the portfolio risk and mean that an economic shock would negatively affect VALE's 
common shares and positively affect its preferred shares, which is not consistent 
with the real situation. Furthermore, it is not possible to make any type of inference 
about the companies' sectors by observing only the eigenvectors Now, analyzing the 
graphs of the eigenvectors associated with the 3 smallest eigenvalues (λ₁ = 0.07, λ2 
= 0.13  λ3 = 0.35 respectively), we have figures 14, 15 and 16.[ 18 [  
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Figure 14. Eigenvectors of the smallest eigenvalue of the September portfolio. 

 
Figure 15. Eigenvectors of the second smallest eigenvalue of the September 
portfolio. 

 
Figure 16. Eigenvectors of the third smallest eigenvalue of the September portfolio. 
 
Portfolios constructed from the lowest eigenvalues are low-risk long-short portfolios. 
Figure 14, related to eigenvalue λ₁ = 0.07, is a portfolio bought in VALE3 and sold in 
VALE5, which are two different types of VALE shares; graph 8, eigenvalue λ₁ = 
0.13, is a portfolio bought in PETR3 and sold in , which are also two different types 
of shares of the same company (Petrobrás); and finally, graph 9, eigenvalue λ3 = 
0.35, represents a portfolio bought in ELET3 (Eletrobrás) and sold in TRPL4 
(Transmissão Paulista), which, despite being different companies, are companies in 
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the same sector of activity, public utility, and the performance of one company 
directly affects the performance of the other.[ 19 ] 
 
 
 
 
 
Table 2 .The correlation matrix shows that these are portfolios of highly correlated 
assets, in fact, these are the most correlated assets in the sample of 50 shares. 

 VALE3 VALE5 PETR3 PETRA ELET3 TRPLA 

VALE3 1 0.914 0.456 0.446 0.130 0.094 

VALE5 0.914 1 0.444 0.462 0.143 0.073 

PETR3 0.456 0.444 1 0.845 0.131 0.094 

PETRA 0.446 0.462 0.845 1 0.143 0.087 

ELET3 0.130 0.143 0.131 0.143 1 0.611 

TRPLA 0.094 0.073 0.094 0.087 0.611 1 
Analyzing the 3 smallest eigenvalues of the random matrix (λ = 0.70, λ = 0.72 and λ 
= 0.74 respectively), we have the following eigenvectors represented in figures 17, 
18 and 

 
Figure 17. Eigenvectors of the smallest eigenvalue of the random matrix portfolio. 
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Figure 18. Eigenvectors of the second smallest eigenvalue of the random matrix 
portfolio. 

 
Figure 19. Eigenvectors of the third smallest eigenvalue of the random matrix 
portfolio. 
As can be seen, these eigenvectors do not represent only the assets with the highest 
correlations and all of these portfolios have positions in practically all of the stocks in 
the study. Furthermore, it is practically impossible to perceive any difference 
between these portfolios and the portfolios constructed from the three highest 
eigenvalues of the random matrix [ 20 ]. 
 
Carrying out the same procedure as for the month of September, graph 20 of the 
eigenvalues of the random matrix was generated, and graph 21, representing the 
distribution of the eigenvalues of the real series 
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Figure 20. Distribution of eigenvalues            
Figure 21. Distribution of eigenvalues  
 of the simulated random matrix                       
of December data. 
for December.    
 
The minimum (λ-) and maximum (λ+) 
values of the probability distribution function 
given by equation 9, taking into account that 
for the month of December the same 50 
assets were used as for the month of 
September, but having 1657 observations 
for each, that is, n=50 and T=1635, are: 

λ- = 0.6826  , λ+ = 1.3778 
 
These values are very similar to those found in September. Also analyzing the 
agreement of the eigenvalues of the real series with the Random Matrix Theory, 
when obtaining the largest eigenvalues, λ50 = 7.123, λ49 = 1.712 and λ48 = 1.582, we 
see that none of them belong to the interval (they are all greater than the upper limit). 
Regarding the 3 smallest eigenvalues, they are:λ =0.149, λ, = 0.2181 and λl =0.376. 
These values are also all located below the lower limit found ,The same finding from 
September also applies here. The largest eigenvalue of the real matrix is more than 
5 times larger than the upper limit of the eigenvalues of the random matrix. It is also 
observed that 40% of the eigenvalues are located outside the obtained range, with 
28% below the minimum limit and 12% above the maximum limit [ 21]. 
4 Discussion  
A correlation matrix that captures the price variations of different assets provides valuable 
insight into the market relationships between companies. By utilizing such matrices, it 
becomes possible to simulate the returns of a portfolio given a price shock affecting one or 
more assets. 

Consider the correlation matrix for three assets—A, B, and C—as follows: 

𝑀 = �
1 0.2 0.9

0.2 1 −0.3
0.9 −0.3 1

�…………………………(23) 

This matrix indicates the following relationships: 

• A correlation of 0.2 between assets A and B means that, if asset A appreciates by 
10%, asset B is expected to appreciate by 2%. 

• A correlation of 0.9 between assets A and C implies that, if asset A appreciates by 
10%, asset C is likely to appreciate by 9%. 
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• A correlation of -0.3 between assets B and C suggests that an increase in asset B’s 
price is expected to lead to a decrease in asset C’s price, and vice versa. 

For a portfolio consisting of 50% asset B and 50% asset C, assuming a 10% increase in 
asset A’s price, the hypothetical portfolio's return can be calculated as follows: 

Portfolio Return = 0.5 × 2% + 0.5 × 9% = 5.5% 

This relationship is crucial for assessing the potential spillover effects of economic shocks. 
Specifically, if a significant price change occurs in one sector (represented by an asset), it is 
essential to understand how this shock can contaminate or influence other sectors of the 
economy, as reflected through the interrelationships between asset returns. 

 

Accelerating Portfolio Shock Calculations Using Matrix Multiplication 

To enhance the efficiency of calculating the final result of a price shock to a portfolio and to 
facilitate simulating shocks across different assets, the correlation matrix can be multiplied 
by a matrix representing the weights of the assets in the portfolio. This approach significantly 
reduces computational complexity and aids in quick simulations. 

For instance, consider a portfolio comprising 50% of asset A, 20% of asset B, and 30% of 
asset C. The weight matrix for this portfolio is represented as follows: [ 22 ] 

𝑃3,1 = �
0.5
0.2
0.3

�………………………(24) 

Multiplying this weight matrix by the correlation matrix of the assets, we obtain the 
following result: 

𝑟3,1 = �
0.81
0.21
0.69

�………………………..(25) 

This implies that: 

• If asset A appreciates by 10%, the portfolio is expected to appreciate by 8.1%. 
• If asset B appreciates by 10%, the portfolio is expected to appreciate by 2.1%. 
• If asset C appreciates by 10%, the portfolio is expected to appreciate by 6.9%. 

To further simplify the calculation of the final result, price shocks can be represented in a 
matrix form and then multiplied by the previously obtained result matrix. For example, if a 
shock of 10%, 15%, and -10% occurs for assets A, B, and C, respectively, the shock matrix 
is: 
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𝑧 = �
0.1

0.15
−0.1

�………………………(26) 

Multiplying the shock matrix by the portfolio impact matrix: 

�
0.1

0.15
−0.1

� ⋅ �
0.5
0.2
0.3

� = 0.044…………………………….(27) 

This results in a 4.4% appreciation of the portfolio, demonstrating how the combined shocks 
affect the overall portfolio return. 

Eigenvectors and Portfolio Risk 

In a specific scenario where the portfolio is represented by an eigenvector, the relationship 
can be expressed as follows: 

𝐻𝑁𝑁𝑁𝑥𝑁 = �

𝑎1,1 𝑎1,2 … 𝑎1,𝑛
𝑎2,1 𝑎2,2 … 𝑎2,𝑛

⋱
𝑎𝑚,1 𝑎𝑚,2 … 𝑎𝑚,𝑛

�…………………………..(28) 

When this matrix is multiplied by the eigenvector (e.g., 𝐵1, 𝐵2, ..., 𝐵𝑛), it represents the 
weight distribution of the portfolio. The impact of a shock on any asset can be calculated 
using the relationship 𝜆 × 𝜐, where: 

• 𝜆 is the eigenvalue (a measure of risk), and 
• 𝜐 is the eigenvector representing the portfolio weights. 

This relationship suggests that the eigenvalue can be interpreted as a measure of risk: the 
higher the eigenvalue, the greater the impact of shocks on the portfolio’s overall return. [ 23 ] 

In this study, it is crucial to assess whether the eigenvalues and eigenvectors of the 
correlation matrices of returns exhibit temporal stability. Temporal stability implies that the 
patterns and relationships observed in historical data can be used to extrapolate and predict 
future market behavior. This section focuses on comparing the eigenvectors from the 
September and December correlation matrices, specifically comparing the maximum and 
minimum eigenvectors. The goal is to understand whether the market dynamics, as 
represented by these eigenvectors, remain consistent over time. 

To investigate the temporal stability, comparisons will be made between the sets of 
maximum eigenvalues (λ48, λ49, λ50) and minimum eigenvalues (λ1, λ2, λ3) from the 
correlation matrices of returns observed in the months of September and December. These 
eigenvalues and their corresponding eigenvectors represent distinct aspects of the market's 
structure. The maximum eigenvalues typically correspond to the principal components of the 
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data, capturing the largest variations in the returns, while the smallest eigenvalues correspond 
to the less significant components, reflecting noise or smaller-scale variations. 

The comparisons will be conducted using two methods: 

• Graphical Representation: The eigenvectors corresponding to the maximum 
and minimum eigenvalues will be visualized in graphical form. This allows for an 
intuitive comparison of their behavior across the two months. Any significant 
differences in the structure of the eigenvectors would indicate a lack of temporal 
stability. 

• Angle Between Eigenvectors: As discussed in Section 3, the temporal stability 
of eigenvectors will be quantified by calculating the angle between the two 
eigenvectors being compared. The angle between two vectors provides a 
measure of their directional similarity. A smaller angle indicates that the 
eigenvectors are closely aligned, suggesting that the temporal stability is high, 
while a larger angle suggests greater variation between the eigenvectors over 
time. 

The maximum eigenvalues (λ48, λ49, λ50) are typically associated with the dominant 
market factors or principal components. These eigenvalues are more likely to show stable 
patterns over time, as they represent significant underlying market behaviors or correlations 
between assets. On the other hand, the minimum eigenvalues (λ1, λ2, λ3) may exhibit more 
volatility, as they are often linked to smaller, noise-driven variations that could change more 
significantly across time periods. By examining both sets of eigenvectors and their 
corresponding eigenvalues, the study aims to determine whether the market's principal 
components and less significant fluctuations remain stable between September and 
December, providing insights into the potential for extrapolating historical data to predict 
future market behavior. 

The largest eigenvalue λ50 has its eigenvectors presented in the graph illustrated in 
Figure 22. For this, the eigenvalue corresponding to the month of September was 
8.141 and for the month of December it was 7.123. According to the interpretation 
that the largest eigenvalue represents the market portfolio, a reduction of 
approximately 12% was observed. 
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Figure 22. Eigenvectors corresponding to the eigenvalue 50 for the months of 
September and December. 
 
From Figure 22, it can be seen that the market representative portfolio behaved in a 
similar way. When comparing these two months, it was possible to verify from 
equation 11 that the angle between these two vectors is approximately 12°, that is, 
these eigenvectors are close to alignment. It can be concluded that there were no 
significant variations in the market in this time interval to the point of impacting the 
portfolio and risk, for eigenvalue λ49, a reduction in portfolio risk is observed similar to 
that which occurred for the highest eigenvalue. In this case, this parameter was 
equal to 2.060 for the month of September and 1.712 for the month of December, 
with these data corresponding to a reduction of 17% [24]. 

 
Figure 23. Eigenvectors corresponding to eigenvalue 49 for the months of 
September and December. 
 
Figure 23 illustrates the eigenvectors corresponding to these eigenvalues for the two 
months of analysis. By inspecting the graph, it can be seen that there were not many 
inversions in the portfolio, although reductions in the sales of some assets are 
suggested, such as Vale and an increase in the purchase of Iguatemi shares. There 
are inversions in portfolio operations, of which Eletrobrás stands out. 
 
The angle between the two eigenvectors was approximately 56°, indicating that there 
were significant changes in the set of operations in the portfolio. In other words, 
although the directions of the operations remained constant in the vast majority of 
assets, the weights of each of the operations were significantly changed.[ 25 ] 
 
For eigenvalue λ48, it is observed that this eigenvalue was equal to 1.812 in 
September, while for December its value was 1.582. In this case, a reduction of 

approximately  13%  was observed.  
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Figure 24. Eigenvectors corresponding to eigenvalue 48 for the months of 
September and December, 
 
The graphical representation of these two eigenvectors is illustrated in Figure 24. In 
this case, there were significant changes in the composition of the portfolio, 
presenting the most unstable behavior among all the other eigenvectors studied to 
date. One of the hypotheses considered is that these eigenvalues are approaching 
the band that defines the region that behaves like eigenvalues of a random matrix 
and, due to this, presents greater volatility. In this case, the angle calculated 
between the two vectors was approximately 85°, revealing almost an orthogonality 
characteristic between them [26]. 
 
Next, analyses similar to those performed for the largest eigenvalues will be carried 
out, now considering the three smallest eigenvalues λ1, λ2 and λ3. For these cases, 
the eigenvectors were grouped according to the distribution of their portfolio. 
 
Taking these new groupings into account, the eigenvalues λ2 for September and λ₁ 
for December will be analyzed, with their values being 0.131 and 0.149. In this case, 
there was an increase in the risk associated with the portfolio in this period of 14%. 
 

 
Figure 25. Eigenvectors corresponding to eigenvalue 2 and 1 for the months of 
September and December, respectively. 
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Figure 25 shows the graph of the eigenvectors related to these eigenvalues. It can 
be seen that for Petrobras assets (PETR3 and ), behavior remained stable, with a 
small reduction in the purchase and sale of these, respectively. The biggest change 
occurred for Vale assets, with the December portfolio ceasing to buy the VALE3 
asset and starting to buy the VALE5 asset. This instability may be due to the high 
correlation between these two assets. For these two eigenvectors, it is possible to 
observe a change of 36° in the angle between them, caused mainly by the inversion 
of the purchase/sale operations of Vale assets [27]. 
The second pair of eigenvalues to be analyzed will be λ₁ for September and λ₁ for 
December, which have values of 0.074 and 0.218. In this case, there was an 
increase in the associated risk of 94%, which may be a result of the increase in the 
correlation coefficient between the assets VALE5 and  from 0.46 to 0.53. 

 
Figure 26. Eigenvectors corresponding to eigenvalue 1 and 2 for the months of 
September and December, respectively. 
 
The eigenvector graph is illustrated in Figure 26. One can observe stability in relation 
to Vale's assets (VALE3 and VALE5), which represent the majority of the operations 
in this portfolio. In this case, one observes a behavior similar to the eigenvectors 
analyzed in Figure 25, with the difference that the inversion of operations occurred 
for Petrobras assets. The angle between the eigenvectors is 38°, and their 
misalignment was caused mainly by the inversion of operations for Petrobras assets. 
The portfolios corresponding to eigenvalues 3 for the months of September and 
December presented the greatest instability among the cases analyzed for the 
lowest eigenvalues, with their values being equal to 0.352 and 0.376 respectively. 
 
The graph illustrated in Figure 27 shows that in September the portfolio was mainly 
composed of assets from Eletrobrás and Transmissão Paulista de Energia. In this 
month, the correlation between these two assets was the third highest considering 
the entire portfolio. Although they are not assets from the same company, as 
mentioned previously, they have a high correlation, as they refer to the same 
electricity generation and transmission sector. For the month of December, it can be 
seen that the most correlated stocks are those related to the company Usiminas. 
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Figure 27. Eigenvectors corresponding to eigenvalues 3 for the months of 
September and December. 
By calculating the angle, it is also possible to verify the situation of great instability, 
since its value is approximately 84", indicating a condition close to orthogonality for 
the two vectors [28]. 
 
5  Conclusion  
The application of Random Matrix Theory (RMT) to high-dimensional statistics has 
significantly advanced the field of data analysis by providing essential tools for 
managing large and complex datasets. RMT has facilitated a deeper understanding 
of the spectral properties of large random matrices, leading to improvements in 
covariance matrix estimation, principal component analysis (PCA), and 
hypothesis testing methods. These advancements are crucial in addressing the 
challenges posed by high-dimensional data, where traditional statistical techniques 
often struggle to deliver accurate results. 
As the size and complexity of data continue to increase, the importance of RMT in 
high-dimensional statistics is expected to grow. Future research will likely explore its 
applications in new fields, such as deep learning, network analysis, and signal 
processing. By integrating RMT-based approaches with contemporary statistical 
and machine learning methods, researchers will be able to develop more efficient 
and reliable models, ultimately enhancing decision-making across various scientific 
and industrial domains. 
The analysis of the largest eigenvalues revealed that the eigenvector associated with 
the largest eigenvalue effectively represents a portfolio that holds all assets in equal 
proportion, thus capturing the overall market risk and reflecting how assets are 
related to the broader economic environment. Additionally, as the eigenvalues 
decreased, the corresponding eigenvectors began to represent portfolios with assets 
that shared similar correlations. This study, which focused on 50 assets, suggests 
that with a broader set of stocks, eigenvalues could more clearly discriminate 
between specific market segments. In contrast, the smallest eigenvalues 
represented portfolios with minimal risk, aligning with long-short strategies 
involving companies within the same sector. 
When extending this analysis to the month of December, no major changes were 
observed in the market relations. The properties of the eigenvalues (and 
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consequently the eigenvectors) derived from RMT remained consistent, confirming 
that temporal stability exists in the short term. This stability supports the viability of 
using RMT for market forecasting and risk analysis, enabling its continued 
application in modeling future market behaviors. 
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