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Abstract 

High-Performance Liquid Chromatography (HPLC) plays a key role in pharmaceutical and 

metabolomic analysis. It separates compounds in detail based on their physical and chemical 

properties. Yet, making sense of complex chromatographic results to group compounds 

remains challenging. This research suggests a machine learning approach to classify drug 

compounds into multiple groups. It uses engineered features taken from HPLC 

chromatograms. The team processed a selected dataset of over 1,600 chromatographic runs. 

These runs showed a wide range of pharmaceutical compound types. From this data, they 

extracted features based on retention. These included peak count highest absorbance, entropy, 

and area under the curve. They sorted compounds into nine main groups like Amino Acids, 

Drugs, Bioactives, and Inorganics. They tested several classifiers such as Random Forest, 

Support Vector Machine, and deep neural networks. The Random Forest model preformed 

best. It reached over 99% accuracy in training and 72% accuracy in testing across all groups. 

This beat traditional models. The suggested method demonstratus that  to combine HPLC 

profiles with ML techniques. This allows for automatic scalable, and meaningful 

classification. This work helps improve drug profiling, quality control, and compound 

tracking in pharmaceutical and biomedical fields. 

Keywords 
High performance liquid chromatographySmall pharmaceutical compoundsReverse phase 

liquid chromatographyQuantitative structure retention relationship 

Introduction 

    Long considered a mainstay in pharmaceutical analysis, high performance liquid 

chromatography (HPLC) provides exact separation and measurement of challenging chemical 

mixes [1-3]. HPLC is an indispensable instrument in both research and clinical settings 

because of its wide use in drug development, quality control, and metabolomics. Still, as 
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chemical data bases become more enormous and complicated, it's clear that HPLC techniques 

must be supplemented with computer approaches [4-5]. 

   Recent developments in machine learning have greatly increased the possibility for 

automatic refinement of HPLC data analysis. By learning from highdimensional 

chromatographic profiles, machine learning models can help compound classification, 

support therapeutic predictions, and reveal subtle biochemical markers that might otherwise 

evade conventional analysis [6-8]. Notably, studies by Boman et al. (2024) [9] and Guo et al. 

(2023) [10] have illustrated the advantages of integrating HPLC and machine learning for 

optimizing drug synthesis and uncovering disease biomarkers Likewise, as shown by Velip et 

al. (2022) and Ciura (2024), the convergence of chromatographic and spectroscopic data with 

artificial intelligence algorithms has led to better compound characterization. 

    Many modern methods, despite advancements, still have limitations—they're usually 

restricted to binary classification jobs or specialized chemical fields. This emphasis limits 

their usefulness in pharmaceutical contexts when several drug classes coexist. Moreover, 

conventional approaches rely on feature engineering suited to particular compound classes, 

hence compromising their generalizability to more extensive data sets. 

    We present a multiclass classification framework (see Figure 1) [10] in this work 

combining deep learning and machine learning methods used on both raw and preprocessed 

HPLC profiles. Utilizing conventional characteristics taken from UVDAD and ELSD 

sensors, this approach is suited to highlight minute differences among many pharmaceutical 

substances. Our findings show that this HPLC framework enhanced with artificial 

intelligence helps to more effectively and correctly identify substances, hence providing a 

repeatable and scalable solution for automated drug classification. The ramifications for drug 

development's analytical processes are significant, therefore stressing the possibility of 

computational intelligence to change pharmaceutical quality control, therapeutic monitoring, 

and compound traceability. 
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Figure 1. The flowchart of proposed approach. [10] 

In the realm of pharmaceutical and metabolomic studies, HPLC continues to serve as an 

essential method, especially in drug profiling and measuring drug efficacy. The recent 

integration of HPLC with ML demonstrates the changing landscape of technology, offering 

more accurate and scalable classification and analysis of complex drug systems. For example, 

Boman et al. (2024) [9] reliance on a design-of-experiments approach alongside HPLC data 

to optimize the yield of mRNA in vitro transcription is an illustration of model-based 

production processes improving the efficiency and quality of drug substances. Another 

example is Guo et al. (2023) [10] who performed serum metabolomic profiling using HPLC-

QTOF-MS in systemic sclerosis patients and applied ML to determine biomarkers for 

predicting disease progression. This study highlights the potential of ML in advanced 

chromatographic techniques for analytical clinical diagnostics. HPLC has widely been 

applied in the study of the effects of stress and therapeutic conditions on particular 

compounds. Using LC-QTOF-MS and NMR to predict the toxicity of the identified stress 

degradation products of urapidil, Velip et al. (2022) [11] combined LC-QTOF-MS and NMR, 

thus providing structural information alongside their toxicity models. 

Moreover, Li (2023) [13] examined the three-dimensional chemical space of extractables and 

leachables using a combination of chromatographic methods and computational models of 

solvation, thus refining the classification of compounds relevant to drug packaging. In 

predictive modeling, Ren et al. (2022) [14] utilized ML to associate Q-markers identified by 
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HPLC with anticancer activity in Astragali radix, which validated HPLC fingerprints for ML-

based efficacy prediction models. In the same vein, Ciura (2024) [12] integrated IAM-HPLC 

with QSRR-ML to predict the small molecule affinity for lipids, thus advancing the 

understanding of membrane drug biology and pharmacokinetics. As a result of the 

combination of spectroscopy and ML with chromatography, progresses have also been made 

in the areas of diagnostics and traceability. Bosch et al. (2022) [15-16] distinguished 

colorectal adenomas using a combination of fecal microbiota and proteome analysis with 

HPLC amino acid profiling. Liu et al. (2023) [17] applied HPLC and deep learning for the 

traceability study of origins of Panax notoginseng. These works demonstrate the significant 

impact ML approaches are having on the interpretation of spectral and chromatographic data 

in the fields of biomedicine and agriculture.problem statement, aimaf thay study  

Methods 

1. Data collection 

In this study, previously published datasets [18, 19] that included HPLC-based profiling were 

utilized to support quantitative structure–retention relationship (QSRR) modeling for the 

classification of multiple drug types. Chromatographic data were acquired using three 

Waters® Alliance 2695 instruments. Of these, two systems were equipped with UV-visible 

photodiode array detectors (PDA 2996), while the third combined a PDA 2998 module with 

an evaporative light scattering detector (ELSD 2424). Across all experiments, a Waters® 

XSelect HSS T3 column (100 × 2.1 mm, 3.5 μm) was employed in order to maintian 

experimental consistency and accommodate a diverse range of compound polarities. 

HPLC runs were managed using Empower 3 Pro FR5 SR5 software (build 3471), which 

enabled automated sample injection, data collection, and raw data export. Each analyte was 

solubilized and injected individually to ensure that each run contained just one compound. 

The mobile phase consisted of an aqueous buffer and methanol (MeOH), with separation 

achieved through a linear gradient shifting from 100% buffer to 95% MeOH. Buffer pH and 

gradient duration were the two key experimental variables; both were systematically adjusted 

to investigate their influence on retention times. 

Raw data were exported as comma-separated value (CSV) files. For UV-DAD signals, the 

first column represented time (in minutes), while subsequent columns recorded absorbance at 

different wavelengths. ELSD files included time in the first column and the detector signal in 

the second. All experimental metadata and processed results were compiled into a master 

spreadsheet (Summary.xlsx). Each entry included a unique line ID, experiment identifier, 

quality control status, injection order, compound name, both raw and corrected retention 

times (for ELSD), sequence start date, gradient duration, targeted and measured pH values, 

and unique identifiers for the HPLC system and column used. 
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2.2 Post-processing and Feature Engineering 

After chromatographic data acquisition, each .arw file was processed to extract structured 

metadata and numerical descriptors. Key metadata—such as the instrument identifier, buffer 

pH, and gradient duration—were parsed directly from the filenames using regular 

expressions. Compound names were also extracted, following established naming 

conventions that reflected both the chromatographic conditions and the detector type. 

For supervised learning applications, each compound was assigned to a functional group 

label (compound_group) based on its biochemical or pharmaceutical classification (e.g., 

“Amino Acid,” “Drug,” “Nucleoside,” “Phenol Derivative,” etc.). These labels were then 

consolidated into broader supergroups—such as “Control,” “Drug,” “Inorganic,” “Bioactive,” 

“Nucleic Derivative,” and “Small Molecule”—which served as the primary classification 

target (compound_supergroup). 

Quantitative features were computed for each chromatogram at individual wavelengths, 

including parameters such as peak count, maximum peak intensity, retention time of the 

maximum, spectral entropy, mean intensity differences, and the integrated area under the 

curve. These features were organized into a wide-format matrix, with columns named 

according to the <wavelength>_<feature> pattern, resulting in several hundred descriptors 

per sample. 

Non-numeric data—including filenames, original compound labels, and supergroup 

classifications—were preserved separately for mapping and validation purposes. The final 

feature matrix (X) consisted exclusively of numeric descriptors suitable for machine learning, 

while the classification target (y) was defined as the compound_supergroup. Exploratory data 

visualization was conducted to assess label balance and class distributions, informing 

subsequent stratification and balancing strategies such as SMOTE during model 

development. 

 

 

 

 

Table 1. Class to Compound Mapping. 

Class Representative Compounds 

Control blank, qc 

Nucleic 23dideoxyadenosine, 2deoxyguanosine, adenine, cytidine, cytosine, dyphylline, 
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Derivative etophylline, thymine, uracil, uridine, xanthine 

Drug acetylsalicylic_acid, amitriptyline, betaxolol, carteolol, chlordiazepoxide, 

chlorphenamine, ibuprofen, imipramine, indomethacin, mefenamic_acid, 

metoclopramide, oxazepam, perphenazine, promethazine, salicylic_acid, 

thioridazine, verapamil 

Amino 

Acid 

arginine, asparagine, aspartic_acid, gamma-aminobutyric_acid, glutamic_acid, 

glycine, lysine, serine, tyrosine 

Organic 

Compound 

22bipyridine, 23dihydroxybenzoic acid, 34dihydroxybenzoic_acid, 

35dichlorophenol, 3aminobenzoic_acid, 4aminobenzoic_acid, 4aminophenol, 

4aminosalicylic_acid, 4hydroxybenzoic acid, 4nitrophenol, acetic_acid, acridone, 

benzoic_acid, citric_acid, coumarin, ethidium, eugenol, gallic_acid, glutaric_acid, 

hydroquinone, indole, lactic_acid, malic_acid, mandelic_acid, phenanthrene, 

phenol, phenylacetic_acid, phthalic_acid, quinoline, thymol 

Other danthron, glucose, hexylbenzene, mannitol, papaverine, ribose, tetracaine 

Bioactive estradiol, niacin, niacinamide 

Small 

Molecule 

22dinaphthyl_ether, benzene, benzyl alcohol, biphenyl, chlorobenzene, 

ethylbenzene, methylpyrrolidone, naphtalene, phenethylamine, toluene 

Inorganic nitrate, nitrite, sulfate, sulfite, thiosulfate 

 

3. ML models and performance metrics 

    In this study, several supervised machine learning models were employed to tackle 

multiclass drug classification using features derived from HPLC data. The selection of these 

models was intentional, given their differing strengths in navigating high-dimensional, 

structured datasets and complex classification tasks. 

    Random Forest (RF) was utilized, leveraging an ensemble of 5,000 decision trees. Each 

tree was trained on a bootstrap sample, and, at each node, a random subset of features was 

considered to determine the optimal split. The final class prediction for each sample was 

determined by a majority vote among all trees, capitalizing on the ensemble’s ability to 

mitigate overfitting and capture diverse data patterns. 

    Logistic Regression (LR) was also adopted, with a maximum of 1000 iterations to ensure 

convergence. As a linear classifier, it computes the class conditional probabilities of all 

possible classes using softmax and thus can solve multiclass problems. 

    Support Vector Machine (SVM) with an RBF kernel was included due to its ability to 

model complex non-linear relationships. The SVM constructs a hyperplane which maximizes 

the margin between classes from an altered feature space, making it especially useful when 

the classes cannot be separated by a straight line. 

Naive Bayes (NB) serves as a simple probabilistic baseline model. It models the likelihood of 

each feature assuming independence with a Gaussian distribution. Even though this 



University of Thi-Qar Journal       

ISSN (print): 2706- 6908, ISSN (online): 2706-6894  

Vol. 20  No.4 Dec  2025  
 
 

106 
 

 

assumption can fail in many cases, NB is known to do surprisingly well, especially with high-

dimensional datasets. 

As a non-parametric approach, the K-Nearest Neighbors (KNN) classifier was implemented 

with k set to 5. KNN classifies an instance based on the majority vote of its five nearest 

neighbors in the feature space, making it simple and effective for multiclass problems. 

The performance of the model has been evaluated using the following metrics and confusion 

matrix:  

Accuracy is the ratio of correctly classified samples to the total number of samples. It is 

defined as: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 

Where: 

• TP stand for True Positives (accurately anticipated positive instances).  

• TN stand for True Negatives (refers to accurately anticipated negative instances). 

• FP stand for False Positives (refers to mistakenly projected positive instances). 

• FN stand for false negatives (refers to improperly anticipated negative situations). 

Precision is the proportion of correctly predicted positive samples among all predicted 

positives, defined as: 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

Recall (sensitivity) is the proportion of correctly predicted positive samples among all actual 

positives, defined as: 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

The F1-score: 

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 =
2 ⋅ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ⋅ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 

The confusion matrix contains a thorough breakdown of predictions, including the number of 

TN, FN, TP and FP classifications for each class.  
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Results  
The dataset was organized into nine principal compound superclasses: Amino Acid, 

Bioactive, Control, Drug, Inorganic, Nucleic Derivative, Organic Compound, Other, and 

Small Molecule. Training data included roughly 154–155 samples per class, amounting to 

1,392 instances. The test set maintained class balance with 27–28 samples each, totaling 246. 

To mitigate class imbalance—particularly for underrepresented groups such as Drug, Organic 

Compound, and Other—the Synthetic Minority Over-sampling Technique (SMOTE) was 

employed during training. This approach aimed to enhance generalization and prevent the 

classifier from biasing toward majority classes. 

Table 2 summarizes the performance of five machine learning models trained on the 

SMOTE-balanced dataset. The RF classifier achieved perfect scores across all metrics 

(accuracy, precision, recall, and F1-score), suggesting strong training performance. However, 

such results, especially in the context of synthetic data, may reflect overfitting rather than 

genuine predictive capacity. 

The KNN model performed robustly, reaching 72% accuracy with balanced macro-averaged 

metrics (approximately 0.72–0.73), indicating effective learning without overfitting. 

In comparison, LR, NB, and SVM models exhibited significantly lower performance. 

Accuracies for these methods ranged from 25% to 39%, and macro F1-scores dropped as low 

as 0.20 for SVM. These outcomes highlight the limitations of linear and probabilistic models 

when applied to the high-dimensional, non-linear feature space characterizing HPLC data. 

Table 2. Training Performance Comparison of Classifiers on SMOTE-Augmented Data. 

Classifier Accuracy Precision Recall F1-score 

Random Forest 1.00 1.00 1.00 1.00 

K-Nearest Neighbors 0.72 0.73 0.72 0.72 

Logistic Regression 0.39 0.39 0.39 0.37 

Naive Bayes 0.32 0.23 0.32 0.25 

Support Vector Machine 0.25 0.27 0.25 0.20 

 

The Random Forest algorithm displayed notably strong performance, reaching an overall 

accuracy of 72% on the synthetic balanced dataset produced via SMOTE. The macro-average 

F1-score was also commendable at 0.71, reflecting stable classification across a diverse range 

of compound categories. 

Certain classes, such as Bioactive (precision: 0.83, recall: 0.93), Nucleic Derivative, and 

Small Molecule, achieved particularly high precision and recall values, underscoring the 

algorithm’s effectiveness in these areas. In contrast, classes like Organic Compound and Drug 
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exhibited comparatively moderate scores. This likely stems from significant overlap in their 

spectral features and variability in formulation, which complicates their classification. The 

detailed classification report is provided below, followed by a comparative analysis of deep 

learning approaches. 

 

 

Figure 2. Confusion matric of random forest testing performance. 

Table 3. Testing Performance Comparison of Classifiers on SMOTE-Augmented Data. 

Model Accuracy Precision Recall F1-score 

Random Forest 0.72 0.72 0.72 0.71 

Logistic Regression 0.37 0.37 0.37 0.33 

Support Vector 

Machine 

0.24 0.29 0.24 0.21 

Naive Bayes 0.29 0.24 0.29 0.24 

Deep Neural 

Network 

0.69 0.7 0.69 0.69 

 

Discussion 

This study presents a multiclass drug classification framework that combines HPLC profiles 

with machine learning approaches. Using a chemically diverse dataset organized into nine 

superclasses, we observed that Random Forest and K-Nearest Neighbors offered the strongest 

classification performance (Random Forest with a perfect 100% training accuracy and KNN 

at 72%). While Random Forest exhibited clear overfitting, its high recall and precision during 
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training suggest robust capacity for handling complex, high-dimensional HPLC-derived 

features. 

The deep neural network classifier also demonstrated promising generalization, achieving a 

test accuracy of 69%, outperforming more traditional algorithms such as Naive Bayes (29%), 

Support Vector Machine (25%), and Logistic Regression (38%). These observations reinforce 

the importance of non-linear modeling and representation learning for uncovering latent 

structure in chromatographic data. 

Our findings are in line with recent literature emphasizing the value of data-driven methods 

for chromatographic analysis. For instance, Boman et al. reported that ML models could 

optimize mRNA yields by identifying process-critical variables from HPLC outputs, 

highlighting ML’s efficiency in industrial bioprocessing. Guo et al. leveraged HPLC-QTOF-

MS and machine learning to identify biomarkers for systemic sclerosis, illustrating the 

clinical utility of chromatographic profiling. Similarly, Velip et al. combined HPLC with LC-

QTOF-MS and NMR to predict degradation pathways and toxicity, further validating the 

relevance of ML in structural classification. 

Our approach builds upon and extends work by Ren et al., who used HPLC-derived Q-

markers to predict the anticancer efficacy of traditional Chinese herbs. In our case, features 

such as peak area, entropy, and the number of peaks at specific wavelengths were utilized as 

multivariate inputs for supervised learning. This strategy is conceptually similar to the QSRR 

framework proposed by Ciura, where IAM-HPLC data were used to predict molecular 

affinities to phospholipids, underlining the significance of physicochemical retention 

behavior in ML models. 

Recent diagnostic applications, such as those by Bosch et al., have also combined HPLC-

derived amino acid profiles with omics data to stratify colorectal cancer risk, paralleling our 

approach to compound superclass classification. Our results also echo the findings of Liu et 

al., who used HPLC and deep learning to trace the origins of Panax notoginseng, 

demonstrating that subtle spectral and retention differences can be effectively captured and 

classified by advanced ML models. 

Nevertheless, this work has several limitations. Although the dataset is chemically diverse, 

class imbalance and limited representation within certain supergroups remain, potentially 

affecting model generalization. While SMOTE was employed to mitigate these issues, 

synthetic oversampling cannot entirely replicate the complexity of real chromatographic 

variability. 

Future efforts should expand the dataset to include more representative compounds per class 

and incorporate additional detection modalities, such as mass spectrometry. Exploring 

transfer learning or self-supervised approaches could further improve performance on novel 
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classes. Finally, integrating explainable AI techniques would support interpretation of feature 

importance and model decisions, enhancing trust and transparency for pharmaceutical 

applications. 

Conclusion  

In this work, we developed an effective framework for multiclass drug classification using 

machine learning on HPLC profiles. We engineered features based on retention times and 

systematically assessed various classification algorithms. Notably, tree-based methods, 

particularly the Random Forest, and deep learning models outperformed others in modeling 

the intricate patterns within chromatographic data. The Random Forest achieved flawless 

accuracy on the training data, while the deep neural network demonstrated strong 

generalization capabilities on the test set. 
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