University of Thi-Qar Journal

Ihiﬁ*{ﬁlz’fﬂ:q
; E:E ’
o5

ISSN (print): 2706- 6908, ISSN (online): 2706-6894

Vol. 20 No.4 Dec 2025

Multiclass Drug Classification Using ML on High-Performance Liquid Chromatography
(HPLC) Profiles

AHMED FILAYIH HASSAN

M.Sc .In Analytical Chemistry, assistant lecturer in Education Directorate
of Dhi Qar, Iraq

Email: ahmed.filayih@utq.edu.iq

Abstract

High-Performance Liquid Chromatography (HPLC) plays a key role in pharmaceutical and
metabolomic analysis. It separates compounds in detail based on their physical and chemical
properties. Yet, making sense of complex chromatographic results to group compounds
remains challenging. This research suggests a machine learning approach to classify drug
compounds into multiple groups. It uses engineered features taken from HPLC
chromatograms. The team processed a selected dataset of over 1,600 chromatographic runs.
These runs showed a wide range of pharmaceutical compound types. From this data, they
extracted features based on retention. These included peak count highest absorbance, entropy,
and area under the curve. They sorted compounds into nine main groups like Amino Acids,
Drugs, Bioactives, and Inorganics. They tested several classifiers such as Random Forest,
Support Vector Machine, and deep neural networks. The Random Forest model preformed
best. It reached over 99% accuracy in training and 72% accuracy in testing across all groups.
This beat traditional models. The suggested method demonstratus that to combine HPLC
profiles with ML techniques. This allows for automatic scalable, and meaningful
classification. This work helps improve drug profiling, quality control, and compound
tracking in pharmaceutical and biomedical fields.

Keywords
High performance liquid chromatographySmall pharmaceutical compoundsReverse phase
liquid chromatographyQuantitative structure retention relationship

Introduction

Long considered a mainstay in pharmaceutical analysis, high performance liquid
chromatography (HPLC) provides exact separation and measurement of challenging chemical
mixes [1-3]. HPLC is an indispensable instrument in both research and clinical settings
because of its wide use in drug development, quality control, and metabolomics. Still, as
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chemical data bases become more enormous and complicated, it's clear that HPLC techniques
must be supplemented with computer approaches [4-5].

Recent developments in machine learning have greatly increased the possibility for
automatic refinement of HPLC data analysis. By learning from highdimensional
chromatographic profiles, machine learning models can help compound classification,
support therapeutic predictions, and reveal subtle biochemical markers that might otherwise
evade conventional analysis [6-8]. Notably, studies by Boman et al. (2024) [9] and Guo et al.
(2023) [10] have illustrated the advantages of integrating HPLC and machine learning for
optimizing drug synthesis and uncovering disease biomarkers Likewise, as shown by Velip et
al. (2022) and Ciura (2024), the convergence of chromatographic and spectroscopic data with
artificial intelligence algorithms has led to better compound characterization.

Many modern methods, despite advancements, still have limitations—they're usually
restricted to binary classification jobs or specialized chemical fields. This emphasis limits
their usefulness in pharmaceutical contexts when several drug classes coexist. Moreover,
conventional approaches rely on feature engineering suited to particular compound classes,
hence compromising their generalizability to more extensive data sets.

We present a multiclass classification framework (see Figure 1) [10] in this work
combining deep learning and machine learning methods used on both raw and preprocessed
HPLC profiles. Utilizing conventional characteristics taken from UVDAD and ELSD
sensors, this approach is suited to highlight minute differences among many pharmaceutical
substances. Our findings show that this HPLC framework enhanced with artificial
intelligence helps to more effectively and correctly identify substances, hence providing a
repeatable and scalable solution for automated drug classification. The ramifications for drug
development's analytical processes are significant, therefore stressing the possibility of
computational intelligence to change pharmaceutical quality control, therapeutic monitoring,
and compound traceability.
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Figure 1. The flowchart of proposed approach. [10]

In the realm of pharmaceutical and metabolomic studies, HPLC continues to serve as an
essential method, especially in drug profiling and measuring drug efficacy. The recent
integration of HPLC with ML demonstrates the changing landscape of technology, offering
more accurate and scalable classification and analysis of complex drug systems. For example,
Boman et al. (2024) [9] reliance on a design-of-experiments approach alongside HPLC data
to optimize the yield of mRNA in vitro transcription is an illustration of model-based
production processes improving the efficiency and quality of drug substances. Another
example is Guo et al. (2023) [10] who performed serum metabolomic profiling using HPLC-
QTOF-MS in systemic sclerosis patients and applied ML to determine biomarkers for
predicting disease progression. This study highlights the potential of ML in advanced
chromatographic techniques for analytical clinical diagnostics. HPLC has widely been
applied in the study of the effects of stress and therapeutic conditions on particular
compounds. Using LC-QTOF-MS and NMR to predict the toxicity of the identified stress
degradation products of urapidil, Velip et al. (2022) [11] combined LC-QTOF-MS and NMR,
thus providing structural information alongside their toxicity models.

Moreover, Li (2023) [13] examined the three-dimensional chemical space of extractables and
leachables using a combination of chromatographic methods and computational models of
solvation, thus refining the classification of compounds relevant to drug packaging. In
predictive modeling, Ren et al. (2022) [14] utilized ML to associate Q-markers identified by
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HPLC with anticancer activity in Astragali radix, which validated HPLC fingerprints for ML-
based efficacy prediction models. In the same vein, Ciura (2024) [12] integrated IAM-HPLC
with QSRR-ML to predict the small molecule affinity for lipids, thus advancing the
understanding of membrane drug biology and pharmacokinetics. As a result of the
combination of spectroscopy and ML with chromatography, progresses have also been made
in the areas of diagnostics and traceability. Bosch et al. (2022) [15-16] distinguished
colorectal adenomas using a combination of fecal microbiota and proteome analysis with
HPLC amino acid profiling. Liu et al. (2023) [17] applied HPLC and deep learning for the
traceability study of origins of Panax notoginseng. These works demonstrate the significant
impact ML approaches are having on the interpretation of spectral and chromatographic data
in the fields of biomedicine and agriculture.problem statement, aimaf thay study

Methods

1. Data collection

In this study, previously published datasets [18, 19] that included HPLC-based profiling were
utilized to support quantitative structure-retention relationship (QSRR) modeling for the
classification of multiple drug types. Chromatographic data were acquired using three
Waters® Alliance 2695 instruments. Of these, two systems were equipped with UV-visible
photodiode array detectors (PDA 2996), while the third combined a PDA 2998 module with
an evaporative light scattering detector (ELSD 2424). Across all experiments, a Waters®
XSelect HSS T3 column (100 % 2.1 mm, 3.5 pum) was employed in order to maintian
experimental consistency and accommodate a diverse range of compound polarities.

HPLC runs were managed using Empower 3 Pro FRS SRS software (build 3471), which
enabled automated sample injection, data collection, and raw data export. Each analyte was
solubilized and injected individually to ensure that each run contained just one compound.
The mobile phase consisted of an aqueous buffer and methanol (MeOH), with separation
achieved through a linear gradient shifting from 100% buffer to 95% MeOH. Buffer pH and
gradient duration were the two key experimental variables; both were systematically adjusted
to investigate their influence on retention times.

Raw data were exported as comma-separated value (CSV) files. For UV-DAD signals, the
first column represented time (in minutes), while subsequent columns recorded absorbance at
different wavelengths. ELSD files included time in the first column and the detector signal in
the second. All experimental metadata and processed results were compiled into a master
spreadsheet (Summary.xlsx). Each entry included a unique line ID, experiment identifier,
quality control status, injection order, compound name, both raw and corrected retention
times (for ELSD), sequence start date, gradient duration, targeted and measured pH values,
and unique identifiers for the HPLC system and column used.

103



University of Thi-Qar Journal

ISSN (print): 2706- 6908, ISSN (online): 2706-6894 * asnla
« jla A
Vol. 20 No.4 Dec 2025 i ) ‘s

2.2 Post-processing and Feature Engineering

After chromatographic data acquisition, each .arw file was processed to extract structured
metadata and numerical descriptors. Key metadata—such as the instrument identifier, buffer
pH, and gradient duration—were parsed directly from the filenames using regular
expressions. Compound names were also extracted, following established naming
conventions that reflected both the chromatographic conditions and the detector type.

For supervised learning applications, each compound was assigned to a functional group
label (compound group) based on its biochemical or pharmaceutical classification (e.g.,
“Amino Acid,” “Drug,” “Nucleoside,” “Phenol Derivative,” etc.). These labels were then
consolidated into broader supergroups—such as “Control,” “Drug,” “Inorganic,” “Bioactive,”
“Nucleic Derivative,” and “Small Molecule”—which served as the primary classification
target (compound_supergroup).

Quantitative features were computed for each chromatogram at individual wavelengths,
including parameters such as peak count, maximum peak intensity, retention time of the
maximum, spectral entropy, mean intensity differences, and the integrated area under the
curve. These features were organized into a wide-format matrix, with columns named
according to the <wavelength> <feature> pattern, resulting in several hundred descriptors
per sample.

Non-numeric data—including filenames, original compound labels, and supergroup
classifications—were preserved separately for mapping and validation purposes. The final
feature matrix (X) consisted exclusively of numeric descriptors suitable for machine learning,
while the classification target (y) was defined as the compound_supergroup. Exploratory data
visualization was conducted to assess label balance and class distributions, informing
subsequent stratification and balancing strategies such as SMOTE during model
development.

Table 1. Class to Compound Mapping.

Class Representative Compounds

Control blank, qc

Nucleic 23dideoxyadenosine, 2deoxyguanosine, adenine, cytidine, cytosine, dyphylline,
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Derivative | etophylline, thymine, uracil, uridine, xanthine

Drug acetylsalicylic_acid, amitriptyline, betaxolol, carteolol, chlordiazepoxide,
chlorphenamine, ibuprofen, imipramine, indomethacin, mefenamic_acid,
metoclopramide, oxazepam, perphenazine, promethazine, salicylic_acid,
thioridazine, verapamil

Amino arginine, asparagine, aspartic_acid, gamma-aminobutyric_acid, glutamic_acid,
Acid glycine, lysine, serine, tyrosine

Organic 22bipyridine, 23dihydroxybenzoic acid, 34dihydroxybenzoic_acid,

Compound | 35dichlorophenol, 3aminobenzoic_acid, 4aminobenzoic_acid, 4aminophenol,
4aminosalicylic_acid, 4hydroxybenzoic acid, 4nitrophenol, acetic_acid, acridone,
benzoic_acid, citric_acid, coumarin, ethidium, eugenol, gallic acid, glutaric_acid,
hydroquinone, indole, lactic_acid, malic_acid, mandelic acid, phenanthrene,
phenol, phenylacetic_acid, phthalic acid, quinoline, thymol

Other danthron, glucose, hexylbenzene, mannitol, papaverine, ribose, tetracaine

Bioactive | estradiol, niacin, niacinamide

Small 22dinaphthyl ether, benzene, benzyl alcohol, biphenyl, chlorobenzene,
Molecule | ethylbenzene, methylpyrrolidone, naphtalene, phenethylamine, toluene

Inorganic | nitrate, nitrite, sulfate, sulfite, thiosulfate

3. ML models and performance metrics

In this study, several supervised machine learning models were employed to tackle
multiclass drug classification using features derived from HPLC data. The selection of these
models was intentional, given their differing strengths in navigating high-dimensional,
structured datasets and complex classification tasks.

Random Forest (RF) was utilized, leveraging an ensemble of 5,000 decision trees. Each
tree was trained on a bootstrap sample, and, at each node, a random subset of features was
considered to determine the optimal split. The final class prediction for each sample was
determined by a majority vote among all trees, capitalizing on the ensemble’s ability to
mitigate overfitting and capture diverse data patterns.

Logistic Regression (LR) was also adopted, with a maximum of 1000 iterations to ensure
convergence. As a linear classifier, it computes the class conditional probabilities of all
possible classes using softmax and thus can solve multiclass problems.

Support Vector Machine (SVM) with an RBF kernel was included due to its ability to
model complex non-linear relationships. The SVM constructs a hyperplane which maximizes
the margin between classes from an altered feature space, making it especially useful when
the classes cannot be separated by a straight line.

Naive Bayes (NB) serves as a simple probabilistic baseline model. It models the likelihood of
each feature assuming independence with a Gaussian distribution. Even though this
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assumption can fail in many cases, NB is known to do surprisingly well, especially with high-
dimensional datasets.

As a non-parametric approach, the K-Nearest Neighbors (KNN) classifier was implemented
with k set to 5. KNN classifies an instance based on the majority vote of its five nearest
neighbors in the feature space, making it simple and effective for multiclass problems.

The performance of the model has been evaluated using the following metrics and confusion
matrix:

Accuracy is the ratio of correctly classified samples to the total number of samples. It is

defined as:

TP+TN
TP+TN+ FP +FN

Accuracy =

Where:
o TP stand for True Positives (accurately anticipated positive instances).
o TN stand for True Negatives (refers to accurately anticipated negative instances).
o FP stand for False Positives (refers to mistakenly projected positive instances).
o FN stand for false negatives (refers to improperly anticipated negative situations).

Precision is the proportion of correctly predicted positive samples among all predicted
positives, defined as:

TP

p . . —_
recision TP + FP

Recall (sensitivity) is the proportion of correctly predicted positive samples among all actual
positives, defined as:

TP

R =
ecall N
['he F1-score:

2 - Precision - Recall
F1 — Score =

Precision + Recall

The confusion matrix contains a thorough breakdown of predictions, including the number of
TN, FN, TP and FP classifications for each class.
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Results

The dataset was organized into nine principal compound superclasses: Amino Acid,
Bioactive, Control, Drug, Inorganic, Nucleic Derivative, Organic Compound, Other, and
Small Molecule. Training data included roughly 154—155 samples per class, amounting to
1,392 instances. The test set maintained class balance with 27-28 samples each, totaling 246.

To mitigate class imbalance—particularly for underrepresented groups such as Drug, Organic
Compound, and Other—the Synthetic Minority Over-sampling Technique (SMOTE) was
employed during training. This approach aimed to enhance generalization and prevent the
classifier from biasing toward majority classes.

Table 2 summarizes the performance of five machine learning models trained on the
SMOTE-balanced dataset. The RF classifier achieved perfect scores across all metrics
(accuracy, precision, recall, and F1-score), suggesting strong training performance. However,
such results, especially in the context of synthetic data, may reflect overfitting rather than
genuine predictive capacity.

The KNN model performed robustly, reaching 72% accuracy with balanced macro-averaged
metrics (approximately 0.72—-0.73), indicating effective learning without overfitting.

In comparison, LR, NB, and SVM models exhibited significantly lower performance.
Accuracies for these methods ranged from 25% to 39%, and macro F1-scores dropped as low
as 0.20 for SVM. These outcomes highlight the limitations of linear and probabilistic models
when applied to the high-dimensional, non-linear feature space characterizing HPLC data.

Table 2. Training Performance Comparison of Classifiers on SMOTE-Augmented Data.

Classifier Accuracy | Precision | Recall | F1-score
Random Forest 1.00 1.00 1.00 1.00
K-Nearest Neighbors 0.72 0.73 0.72 0.72
Logistic Regression 0.39 0.39 0.39 0.37
Naive Bayes 0.32 0.23 0.32 0.25
Support Vector Machine 0.25 0.27 0.25 0.20

The Random Forest algorithm displayed notably strong performance, reaching an overall
accuracy of 72% on the synthetic balanced dataset produced via SMOTE. The macro-average
F1-score was also commendable at 0.71, reflecting stable classification across a diverse range
of compound categories.

Certain classes, such as Bioactive (precision: 0.83, recall: 0.93), Nucleic Derivative, and
Small Molecule, achieved particularly high precision and recall values, underscoring the
algorithm’s effectiveness in these areas. In contrast, classes like Organic Compound and Drug
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exhibited comparatively moderate scores. This likely stems from significant overlap in their
spectral features and variability in formulation, which complicates their classification. The
detailed classification report is provided below, followed by a comparative analysis of deep
learning approaches.
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Figure 2. Confusion matric of random forest testing performance.

Table 3. Testing Performance Comparison of Classifiers on SMOTE-Augmented Data.

Model Accuracy | Precision | Recall F1-score
Random Forest 0.72 0.72 0.72 0.71
Logistic Regression 0.37 0.37 0.37 0.33
Support Vector 0.24 0.29 0.24 0.21
Machine

Naive Bayes 0.29 0.24 0.29 0.24
Deep Neural 0.69 0.7 0.69 0.69
Network

Discussion

This study presents a multiclass drug classification framework that combines HPLC profiles
with machine learning approaches. Using a chemically diverse dataset organized into nine
superclasses, we observed that Random Forest and K-Nearest Neighbors offered the strongest
classification performance (Random Forest with a perfect 100% training accuracy and KNN
at 72%). While Random Forest exhibited clear overfitting, its high recall and precision during
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training suggest robust capacity for handling complex, high-dimensional HPLC-derived
features.

The deep neural network classifier also demonstrated promising generalization, achieving a
test accuracy of 69%, outperforming more traditional algorithms such as Naive Bayes (29%),
Support Vector Machine (25%), and Logistic Regression (38%). These observations reinforce
the importance of non-linear modeling and representation learning for uncovering latent
structure in chromatographic data.

Our findings are in line with recent literature emphasizing the value of data-driven methods
for chromatographic analysis. For instance, Boman et al. reported that ML models could
optimize mRNA yields by identifying process-critical variables from HPLC outputs,
highlighting ML’s efficiency in industrial bioprocessing. Guo et al. leveraged HPLC-QTOF-
MS and machine learning to identify biomarkers for systemic sclerosis, illustrating the
clinical utility of chromatographic profiling. Similarly, Velip et al. combined HPLC with LC-
QTOF-MS and NMR to predict degradation pathways and toxicity, further validating the
relevance of ML in structural classification.

Our approach builds upon and extends work by Ren et al., who used HPLC-derived Q-
markers to predict the anticancer efficacy of traditional Chinese herbs. In our case, features
such as peak area, entropy, and the number of peaks at specific wavelengths were utilized as
multivariate inputs for supervised learning. This strategy is conceptually similar to the QSRR
framework proposed by Ciura, where IAM-HPLC data were used to predict molecular
affinities to phospholipids, underlining the significance of physicochemical retention
behavior in ML models.

Recent diagnostic applications, such as those by Bosch et al., have also combined HPLC-
derived amino acid profiles with omics data to stratify colorectal cancer risk, paralleling our
approach to compound superclass classification. Our results also echo the findings of Liu et
al., who used HPLC and deep learning to trace the origins of Panax notoginseng,
demonstrating that subtle spectral and retention differences can be effectively captured and
classified by advanced ML models.

Nevertheless, this work has several limitations. Although the dataset is chemically diverse,
class imbalance and limited representation within certain supergroups remain, potentially
affecting model generalization. While SMOTE was employed to mitigate these issues,
synthetic oversampling cannot entirely replicate the complexity of real chromatographic
variability.

Future efforts should expand the dataset to include more representative compounds per class
and incorporate additional detection modalities, such as mass spectrometry. Exploring
transfer learning or self-supervised approaches could further improve performance on novel
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classes. Finally, integrating explainable Al techniques would support interpretation of feature
importance and model decisions, enhancing trust and transparency for pharmaceutical

applications.

Conclusion

In this work, we developed an effective framework for multiclass drug classification using
machine learning on HPLC profiles. We engineered features based on retention times and
systematically assessed various classification algorithms. Notably, tree-based methods,
particularly the Random Forest, and deep learning models outperformed others in modeling
the intricate patterns within chromatographic data. The Random Forest achieved flawless
accuracy on the training data, while the deep neural network demonstrated strong

generalization capabilities on the test set.
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