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Abstract 

Climate change poses both pressing scientific and societal challenges requiring accurate 

prediction of extreme events and rigorous adaptation approaches. While classical methods 

such as numerical weather prediction (NWP) and general circulation (GCM) models are still 

central to climate depictions, these models are computationally expensive and, therefore, 

struggle at real-time applications and inherently, in their accuracy  . 

New advancements in artificial intelligence (AI) suggests that, at the very least, machine 

learning (ML) and deep learning (DL) could provide a revolutionary and complementary 

alternative to the physics-based modelling shown previously. In this review, we outline 70 

peer-reviewed papers (2019-2025), we selected the studies using the literature review 

according PRISMA to cover the AI application in prediction. Which highlight the risk of 

using AI for climate forecasting and adaptation. Quantitative evidence indicates that 

GraphCast surpasses ECMWF HRES in roughly 90% of forecasting metrics; GenCast 

delivers 97% higher accuracy compared with ensemble means; and MetNet-2 extends 

precipitation forecasting horizons to nine hours with improved precision. In adaptation, AI 

has helped predict agricultural yield with up to 88% accuracy, alert farmers of imminent 

drought two months in advance, provide early warnings of dengue fever with a reported AUC 

of 0.89, and improve urban flood resilience with accuracy levels as high as 92%     . This review 

focus on both chances and challenges and highlight the constraints in AI applications like the 

dataset and difficulty in weather explanation models. 

However, despite these advances, challenges remain due to data bias, limited visibility into 

deep learning models, high energy consumption, and unequal access to technology. The 

review sets out an evaluation of opportunities and challenges from which AI might be 

effectively applied to climate science and climate-related policy, and suggests a three-pillar 

framework incorporating sustainability, transparency and equity which can enhance 

responsible use within climate adaptation and resilience.  
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Introduction 

A global issue plaguing the 21st century that warrants immediate attention is climate change; 

its effects on ecosystems can be felt and measured. These effects are worsened through the 

frequent heat waves drought, Hurricanes and floods which further disrupts said ecosystems 

[1]-[3]. Preparation in case of such events preserves life. This can be done through predicting 

the above-mentioned events. 

The pillars of Climate sciences are NWP and GCMs (numerical weather prediction & general 

circulation models) [4],[5]. These models which depend on physical equations are utilized to 

predict atmospheric dynamics thus help in the preparations and preserve ecosystems. While 

this is mostly true the value of these models is being threatened by constraints resulting from 

model runtime, low spatial resolution, and limited forecasting skill on events extremity.. Due 

to these obstacles, there are limits to obtaining insightful, real-time, accurate forecasts on 

regional and local levels, especially where there is scarce observations The rise of AI. In 

parallel, breakthroughs in artificial intelligence (AI) notably machine learning (ML) and deep 

learning (DL) have transformed data-driven sciences [6]-[8]. AI is adequate at finding 

patterns in large datasets, combining sources of data such as reanalysis products, remote 

sensing and surface-based observations, and making fast predictions[15]. In the rapid progress 

the gap still clear to  how understanding the  AI dealing with traditional physical models in 

practical life, previous reviews focused only the technical side without explanation the 

fairness and governance sides. this review focus on gaps by academics analysis between 2019 

and 2025. Recent advances include GraphCast, which dominates the high-resolution ECMWF 

model over 90% of verification metrics [21], GenCast, outperforming ensemble forecasts with 

inference times below ten minutes [22], and MetNet-2, that produces accurate precipitations 

forecasts up to nine hours ahead [23]. 

Beyond Forecasting: Adaptation 

Artificial intelligence applications are not limited to weather and climate forecasting and, 

among others, include adaptation. This is an area where enhancing resilience to climate 

change will be crucial. In agriculture, AI has been utilized to better forecast crop yields [43]. 

For water management, it gives alerts for droughts and floods [44], [47]. In [46] it is used for 

predicting outbreaks of diseases associated with the climate in healthy populations. Within 

urban planning, it enables communities to become more resilient to flood events and 

heatwaves [48],[51]. Taken together, these apps illustrate the growing role of AI in connecting 

scientific advances to public decisions. 

Persistent Challenges 

Although there was notable progress, the integration of AI into climate science is not without 

challenges. Key limitations include: 

• Data scarcity and bias, particularly in the Global South [52], [54]. 

• Lack of interpretability, as deep learning models often operate as “black boxes” 

[56]. 

• Environmental costs, due to the high energy consumption required to train large-

scale models [58]. 
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• Equity concerns, since access to advanced AI technologies remains concentrated in 

the Global North [59], [60]. 

Purpose of the Review 

The aim of this review is to execute a systematic analysis and synthesize 70 peer-reviewed 

papers in the period from 2019 to 2025 to answer three main questions: 

1. In what ways is artificial intelligence better at predicting climate than simulations 

based on the laws of physics? 

2.  What are the most effective uses of AI for climate change resilience? 

3. What limitations and regulations are necessary to promote responsible use of these 

technologies? 

This paper offers a novel and structured attempt to critically synthesis this emerging literature 

by empirically situating it in the context of AI for climate science according to three guiding 

posts: sustainability, transparency and equity. 

2. Methodology 

The study was conducted in accordance with the Preferred Reporting Items for Systematic 

Reviews and Meta-Analyses (PRISMA) guidelines [19]. We evaluated each study by the 

methodology used and the model type such as CNN, LSTM, transformer and the performance  

indicators like RMSE, AUC [20]. A literature search was carried out in IEEE Xplore, 

ScienceDirect, SpringerLink, Scopus and arXiv from 2019 until 2025 to identify the latest 

developments of AI applied to solve climate change challenges. 

Inclusion criteria: 

• Peer-reviewed articles and preprints that applied AI to climate forecasting or 

adaptation. 

• Quantitative performance evaluation (e.g., accuracy, root mean square error (RMSE), 

area under the curve (AUC), critical success index (CSI), etc.). 

• Studies published in English between 2019 and 2025. 

• This help to ensure the ability to reuse the studies in selection process. 

Exclusion criteria: 

• Sources not published in English. 

• Theoretical articles or commentaries lacking empirical results. 

• Duplicates or studies not directly related to climate science. 

Database search: A total of 1,132 publications were identified through the database search. 

Following title and abstract screening, 214 studies were included in the review. After full text 

screening, the total records reduced to 70 articles that were reviewed and classified under two 

main domains: prediction and adaptation. In addition, several fundamental works on AI 

architectures (LSTM [26], Transformer [27]) were added to provide procedural context. 
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The studies were analyzed in three steps: 

1. Classification of approaches, such as CNN, LSTM, GNN, Transformers, and hybrid 

physics–AI models. 

2. Comparison of results with traditional approaches, including ECMWF HRES and 

GFS. 

3. Critical evaluation of challenges, limitations, and research gaps. 

3. Artificial Intelligence in Climate Forecasting 

AI has seen outstanding improvement in climate forecasting, particularly in short-term now 

casting, medium-range weather forecasting, and even seasonal-to-interannual climate 

forecasts. Unlike exclusively physics-based models, AI is capable of utilizing heterogeneous 

data sets and providing high-accuracy forecasts and radically reducing computation time 

[21],[22], [24]. 

Before comparative results, the models must be contextualized. GraphCast leverages graph 

neural networks (GNNs) to model physical relationships between atmospheric grids; GenCast 

uses generative models to create ensemble predictions; FourCastNet uses Fourier Neural 

Operators to make global forecasts; and MetNet-2 has been designed specifically for high-

resolution precipitation now casting. These are all distinct but complementary approaches 

within AI-based climate modeling[29],[30]. 

Table I presents a summary of outstanding AI models developed over the past five years, 

assessed for their forecasting horizon, training datasets utilized, performance metrics, and 

stated outcomes. The particularly noteworthy aspect is that the models are not only faster but 

also far superior to conventional numerical forecasting models, especially for medium-range 

prediction and short-range precipitation forecast. 

 

Table I. Representative AI Models for Climate Forecasting 

Model Task / Horizon Dataset(s) 

Used 

Metric / 

Result 

Advantage Ref. 

GraphCast Medium-range 

(3–10d) 

ERA5 90% better 

skill vs. 

ECMWF 

HRES 

High multi-

variate skill 

[21] 

GenCast Probabilistic 

≤15d 

ERA5, 

ECMWF ENS 

97% higher 

skill vs. ENS; 

inference <10 

min 

Fast ensemble 

forecasts 

[22] 

FourCastNet Medium-range 

global 

ERA5 Comparable to 

NWP; 80,000× 

faster 

Extreme 

efficiency 

[29] 

MetNet-2 Nowcasting 

≤12h 

Radar + 

Satellite 

Higher CSI up 

to 9h 

Superior 

precipitation 

accuracy 

[23] 

DeepMind 

NWP 

1–10d global ERA5 Reduced 

RMSE, 

Generalizable 

transformer 

[31] 
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competitive 

with HRES 

ClimaX Representation 

learning 

CMIP6, 

ERA5 

Strong zero-

shot transfer 

Pre-training for 

climate tasks 

[33] 

Hybrid ENSO 

DL 

ENSO seasonal NOAA SST Lead times 

extended by 2–

3 months 

Seasonal 

predictability 

[35] 

CNN–LSTM Rainfall 

prediction 

India obs. RMSE ↓ 15% 

vs. NWP 

Captures spatio-

temporal links 

[36] 

 

From Table I, it can be seen that AI models have domain-specific strong points. MetNet-2 is 

superior in short-term forecast of precipitation with better critical success index (CSI) scores 

for a maximum of nine hours. GraphCast and GenCast both perform better than numerical 

physics-based models for medium-range forecasts, and FourCastNet attains the level of 

efficiency that cannot be matched by conventional models[32],[34]. Hybrid systems that 

combine physical constraints with AI architectures show a lot of promise for forecasting 

events like El Niño–Southern Oscillation (ENSO). However, these models often lack 

interpretability and act like "black boxes," which is a concern for operational agencies [55]–

[57]. The chosen model achieves high accuracy compared to traditional numerical methods 

for short- and medium-term predictions. By using available data and physical explanations, 

the hybrid approach brings together both physical and AI methods in this field. 

 

To further illustrate comparative performance, Figure 1 summarizes the skill improvements 

achieved by leading AI models relative to traditional numerical weather prediction. 

 

Figure 1. AI Models Versus NWP in Approaching the Performance Limit 

As we can see from Figure 1, the AI-based methods always achieve higher precision on 

various forecast horizons. These findings demonstrate the potential of AI as a supportive 

methodology to physic-based model, particularly in short-to-medium-term predictions. But 



University of Thi-Qar Journal       

ISSN (print): 2706- 6908, ISSN (online): 2706-6894  

Vol. 20  No.4 Dec  2025  
 

 

118 
 

 

the problem of generalizing these improvements to low data regimes still persists. This 

underscores the importance of hybrid models and tailored calibration. 

Artificial Intelligence for Climate Change Adaptation 

Although prediction continues to be an important component of climate science, adaptation is 

the operational aspect of resilience in light . Artificial intelligence presents a new opportunity 

to enhance adaptive capacity in sectors like agriculture, water management, public health and 

urban planning. Contrary to global forecasting, adaptation is localized and context dependent 

by its nature: social-economic, environmental and infrastructural data need to be factored in 

joint [40], [43], [44]. 

A few case studies of how AI has been used to adapt in different regions and sectors are 

shown in table (II). These cases provide evidence for the potential of machine learning 

models, from Random Forests to hybrid network design like CNN–LSTM in improving early 

warning systems efficiency and better allocating resources and decision support in climate-

sensitive sectors[46], [48]. 

Table (II). Representative Applications of Artificial Intelligence in Climate 

Change Adaptation 

Sector AI Method Region/Case Data Used Result/Metri

c 

Impact Ref. 

Agriculture LSTM Kenya 

(Maize) 

Weather + Satellite 88% yield 

accuracy 

Farmer 

decisions 

improved 

[43] 

Agriculture RF India (Wheat) Obs. + Climate RMSE ↓ 12% Reliable wheat 

forecasts 

[40] 

Agriculture CNN–LSTM Brazil 

(Soybean) 

MODIS + Climate R² = 0.89 Food security 

planning 

[49] 

Water RF+LSTM India 

(Drought) 

SPI + Soil Moisture Early 

warning: +2 

months 

Drought 

preparedness 

[44] 

Water ANN Flood Bangladesh Gauge + Satellite Lead time 

+36h 

Flood warnings 

improved 

[47] 

Health XGBoost+SHAP Bangladesh 

(Dengue) 

Climate + 

Epidemiology 

AUC = 0.89 Early health 

warnings 

[46] 

Health LSTM+Mobility Africa 

(Malaria) 

Climate + Mobility 85% accuracy Better health 

resource use 

[50] 

Urban CNN+RL Netherlands Radar + Hydro 

models 

92% 

precision 

Flood-resilient 

cities 

[48] 

Urban GNN+IoT China 

(Heatwaves) 

IoT + Weather +15% 

detection 

improvement 

Smart city 

adaptation 

[51] 

Table (II) shows how adaptive capacity is made reinforced significantly. Predictive yield 

models are also utilized by farmers in agricultural settings assisting them to make more 

informed decisions when it comes to plantation irrigation which in turn is directly related to 

food security. Lead times obtained from AI driven systems are magnitudes more effective 

than traditional methods. An example of this can be observed in the public health sector: Data 
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driven epidemiological models that incorporate climate variables are effectively predicting 

disease outbreaks and allowing for the better allocation of medical resources. Lastly, 

infrastructure that is reinforced by AI systems must be utilized in urban settings because they 

are more effective to help manage heat waves and in the management of floods. We can see 

the studies shown local significant but the mostly applications have limitations and in 

international scope. so the future works should focus on the AI models Can use with multi 

regions strategy[38], [39]. 

Figure (2) adaptation studies discriminated throughout numerous sectors. This figure offers a 

meta-analytic summary from the seventy sources examined. 

 

Figure (2). Sectoral Disaggregation of Artificial Intelligence based Climate 

Adaptation Research   

Early on, food security was a primary issue which was highlighted by climate change 

research.  Agriculture still being research in an extensive rate as Figure (2) clarifies. Thus, 

adaptations that are a product of AI address issues at a larger scope within the public health 

sector and urban systems. And while there are fewer water system studies, they often produce 

very influential outcomes, because dealing with drought and flood is key to building climate 

resilience. 

Challenges and Limitations 

While there has been some good progress, artificial intelligence isn’t exactly free and clear in 

the climate science department. Key challenges The team identified five or six main 

challenges: data quality, explain ability, environmental sustainability, justice and the problem 

with bad governance. Knowledge of these limits is crucial[41],[42] and not only for 

advancing the technical performance, but also to allow AI systems do their part in a 

responsible climate action [52]–[63]. It has to be considered that the AI ability can’t be 

equally distributed among the regions in order to address the computing gap. UNESCO 

declared 2025 as the main step to ensure the presence of a researcher from the Global South 

in climate research. 
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Table III provides an overview of the most relevant technical and socio-political limitations 

that are impeding a larger application of AI in climate science. Although individually these 

problems have been addressed in the literature, cataloguing these together with some 

suggested remedies points to potential ways forward. 

Table (III). Challenges and Limitations of Artificial Intelligence in Climate Science with 

Mitigation Strategies 

Category Challenge Impact Evidence / 

Case 

Mitigation 

Strategy 

Ref. 

Data Sparse / 

biased 

datasets 

Limits 

generalization; 

poor regional fit 

Africa: large 

station gaps 

[54] 

Data 

augmentation, 

downscaling, 

citizen science 

[52], 

[54] 

Data Short 

historical 

records 

Weak long-term 

training signals 

ENSO 

predictions 

limited [35] 

Synthetic data 

generation, paleo-

climate 

integration 

[35] 

Interpretability Opaque deep 

learning 

models 

Reduces trust for 

operational use 

Transformers 

as black boxes 

[56] 

Explainable AI 

(SHAP, LIME), 

physics-informed 

AI 

[56], 

[57] 

Interpretability Limited 

transparency 

Policy reluctance 

to adopt AI 

forecasts 

Health 

surveillance 

models [61] 

Model cards, 

uncertainty 

quantification 

[57], 

[61] 

Environmental High training 

footprint 

CO₂ emissions 

equivalent to 

cars’ lifetime 

NLP model 

training case 

[58] 

Green AI 

(efficient 

architectures, 

renewable HPC) 

[58], 

[68] 

Equity Unequal 

access to 

compute 

Widening North–

South divide 

Compute 

concentration 

in North [59] 

Cloud-based open 

access, AI 

capacity building 

[59], 

[60], 

[70] 

Governance Lack of 

regulation 

Risk of misuse, 

no accountability 

OECD AI 

policy report 

[62] 

International 

standards, 

independent 

audits 

[62], 

[63] 

 

Table (III) illustrates the limitations of AI over technical, environmental, and justice levels. 

Sparsity and biased data undermine generalizability, especially in sparsely realized regions 

such as Africa. Deep learning models are hard to interpret, and it isunattainable to have total 

faith in them. Large model training also requires a lot of energy and emissions, sometimes the 

same as that of a car over its thorough lifespan. AS well, not all people have the same 

capability to utilize enormous computers, and that makes the gap between poor and rich 

countries even larger. Weak rules and laws mean AI can be misused without consequences . 

Because of this, we need ways to improve data, make AI easier to understand (called 

explainable AI), and use greener AI methods. We also need international rules to guide AI use. 

For AI to effectively contribute to the mitigation of climate change, the following actions 

must take place. AI has many possible applications in climate science, yet, several challenges 

limit the technology from attaining its potential. 
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In figure 3, I show these problems and how they connect to issues like missing data, hard-to-

understand models, weak rules, and unfair access. I also show possible solutions. This “two 

sides of a coin” view shows that both technical fixes and policy changes are needed to solve 

these problems. 

 

Figure (3). Challenges in Climate Science Using Artificial Intelligence and Their 

Mitigation Strategies 

Fragmented data, high training related carbon footprint, lack of interpretability, and 

governance gaps are all oppositions which are not fixable one by one as illustrated by Figure 

(3). They need to be smartly besieged through responses like downscaling methods and data 

augmentation. Explainable AI facilitates systems interpretability. Green AI is aimed at 

reducing the carbon impact of AI systems. Open-access initiatives directed equity. 

International governance frameworks establish accountability standards. This framework 

highlights the need to integrate technical innovation with systemic strategies to secure 

responsible application. 

6. Discussion and Future Directions 

The literature considered demonstrates that artificial intelligence has already begun to reshape 

climate science. Nevertheless, most of the applications are still in the prototype stage or 

limited to specific datasets. Operational integration entails bridging gaps more than technical 

performance including reproducibility, transparency, socio-economic integration, and 

sustainability [65]–[70]. This review show the lack in the standards evaluation performance of 

AI models in climate science. to expanding the scope like climate bench and create global 

open dataset to enhancement the model and reuse ability in the researches. 

The integration of AI in climate science cannot be claimed to be done without responsibility 

principle alignment. Figure (4) illustrates responsible AI by the three interlinking pillars of 

sustainability, transparency, and justice—each of which is paramount in ensuring that AI is 

effective and ethical in supporting climate solutions. 
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Table (IV). Research Gaps and Future Directions in Artificial Intelligence for Climate 

Science 

Gap Importance Future Direction Timeframe Example 

Projects 

Ref. 

Benchmarking Lack of standard 

metrics 

Expand 

ClimateBench; 

enforce 

reproducibility 

Short-term 

(1–3 yrs) 

ClimateBench 

[65] 

[65] 

Long-range 

skill 

Weak 

decadal/seasonal 

models 

Physics-informed 

transformers; 

hybrid AI+physics 

Medium-

term (3–7 

yrs) 

Pangu-Weather, 

ClimaX [33] 

[66] 

Extreme 

events 

Poor 

representation 

Tail-focused loss 

functions; synthetic 

extremes 

Medium-

term (3–7 

yrs) 

GANs for 

rainfall [37] 

[37] 

Socio-

economic 

Narrow technical 

focus 

Integrate climate + 

health + economic 

datasets 

Long-term 

(5–10 yrs) 

UNDP 

AI4Climate [70] 

[67], 

[70] 

XAI for policy Low transparency Operationalize 

SHAP/LIME in 

climate workflows 

Short-term 

(1–3 yrs) 

Interpretable 

ML [56], [57] 

[69] 

Green AI High carbon 

footprint 

Renewable-

powered training; 

energy tracking 

Medium-

term (3–7 

yrs) 

Green AI 

consortia [68] 

[58], 

[68] 

Governance Lack of oversight Independent audits; 

international 

standards 

Long-term 

(5–10 yrs) 

OECD, 

UNESCO AI 

ethics [62] 

[62], 

[63] 

 

As Table (IV) indicates, short-term priorities should focus on benchmarking and 

explainability to guarantee that AI models are reproducible and sufficiently transparent for 

policy adoption. Medium-term priorities include addressing long-term forecasting and 

extreme climate events, which require hybrid architectures grounded in physical principles 

and synthetic data techniques. Long-term plans should focus on including social and 

economic systems in AI models, using more eco-friendly AI methods, and setting up strong 

rules for AI use. By connecting these ideas to ongoing projects like Climate Bench, UNDP’s 

AI4Climate, and OECD governance rules, this review shows how research can guide real 

world policies and technology. 

Responsible Artificial Intelligence in Climate Science 

The application of artificial intelligence in climate science cannot be regarded as achieved 

without responsibility principle alignment. Figure (4) shows the framework of responsible AI 

as three interdependent pillars: sustainability, transparency, and justice. All three pillars 

constitute an essential component to ensure artificial intelligence has an effective and ethical 

contribution towards addressing climate problems. 
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Figure (4). The Three Pillars of Responsible Artificial Intelligence in Climate Science 

As shown in Figure (4), the intersection of sustainability, transparency, and justice forms the 

core of responsible AI. Sustainability emphasizes energy efficiency and low-carbon 

computing; transparency underscores the role of explainable AI in strengthening decision-

making; and justice guarantees broad and equitable global access. All in all, the above-

mentioned principles establish a framework which it stable when it comes to integrating 

technological advancement while maintaining ethical governance and social responsibility. 

7. Conclusion 

A new emerging and Ever Improving tool, AI predicts and adapts to climate science. 

GraphCast, GenCast, FourCastNet and MetNet-2 which are all AI tools used for forecasting 

proved to be at the same level or even better than traditional models in most scenarios. They 

are more accurate and are much faster than traditional models. With regards to adaptation, AI 

has advanced prediction of crop yield, facilitated monitoring and triggered early warning 

systems for floods and droughts, produced alerts on climate-sensitive epidemics and assisted 

in drafting resilience plans for cities. Yet these possibilities come with caveats. Data poverty 

and bias, especially in the Global South, limited action ability and interpretability of AI 

systems which fosters distrust in decision-making environments, large-scale unsustainable 

models, and the asymmetrical distribution of resources and the environmental footprint of 

large-scale models as well as the challenges of justice while resources remain heavily 

concentrated in the Global North. Leaving out these constraints unaddressed runs the risk that 

AI could deepen inequalities rather than delete the gap. Below is the three pillars that pave the 

way forward  : 

1- Employing sustainably conscious computing and renewable resources to run computing 

will aid to lessen AI’s carbon footprint   . 

2- Incorporating responsible and reasonable AI (XAI) will try to shape confidence and 

accountability   . 

3- To ensure global impartial access and reimbursements, providing democratized admission 

to AI tools, data sets, and infrastructure will support AI impartiality . 
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The Researcher views AI as a tool that aids and accelerates Physical climate science. Finally 

this review provide balanced on the achievements and challenges  of AI in climate sciences 

the main requirements to create standard dataset and progress in models can be explainable . 

to ensure the access to the computing resources to build AI can be responsible enhancing the 

climate science. Through merging insights obtained from Physical models and socio-

economic systems and feeding them to AI; paves the path forward for a more impartial, 

robust, and maintainable climate action in the coming decade. 
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