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Abstract

Climate change poses both pressing scientific and societal challenges requiring accurate
prediction of extreme events and rigorous adaptation approaches. While classical methods
such as numerical weather prediction (NWP) and general circulation (GCM) models are still
central to climate depictions, these models are computationally expensive and, therefore,
struggle at real-time applications and inherently, in their accuracy .

New advancements in artificial intelligence (Al) suggests that, at the very least, machine
learning (ML) and deep learning (DL) could provide a revolutionary and complementary
alternative to the physics-based modelling shown previously. In this review, we outline 70
peer-reviewed papers (2019-2025), we selected the studies using the literature review
according PRISMA to cover the Al application in prediction. Which highlight the risk of
using Al for climate forecasting and adaptation. Quantitative evidence indicates that
GraphCast surpasses ECMWF HRES in roughly 90% of forecasting metrics; GenCast
delivers 97% higher accuracy compared with ensemble means; and MetNet-2 extends
precipitation forecasting horizons to nine hours with improved precision. In adaptation, Al
has helped predict agricultural yield with up to 88% accuracy, alert farmers of imminent
drought two months in advance, provide early warnings of dengue fever with a reported AUC
of 0.89, and improve urban flood resilience with accuracy levels as high as 92% . This review
focus on both chances and challenges and highlight the constraints in Al applications like the
dataset and difficulty in weather explanation models.

However, despite these advances, challenges remain due to data bias, limited visibility into
deep learning models, high energy consumption, and unequal access to technology. The
review sets out an evaluation of opportunities and challenges from which Al might be
effectively applied to climate science and climate-related policy, and suggests a three-pillar
framework incorporating sustainability, transparency and equity which can enhance
responsible use within climate adaptation and resilience.
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Introduction

A global issue plaguing the 21st century that warrants immediate attention is climate change;
its effects on ecosystems can be felt and measured. These effects are worsened through the
frequent heat waves drought, Hurricanes and floods which further disrupts said ecosystems
[1]-[3]. Preparation in case of such events preserves life. This can be done through predicting
the above-mentioned events.

The pillars of Climate sciences are NWP and GCMs (numerical weather prediction & general
circulation models) [4],[5]. These models which depend on physical equations are utilized to
predict atmospheric dynamics thus help in the preparations and preserve ecosystems. While
this is mostly true the value of these models is being threatened by constraints resulting from
model runtime, low spatial resolution, and limited forecasting skill on events extremity.. Due
to these obstacles, there are limits to obtaining insightful, real-time, accurate forecasts on
regional and local levels, especially where there is scarce observations The rise of Al. In
parallel, breakthroughs in artificial intelligence (Al) notably machine learning (ML) and deep
learning (DL) have transformed data-driven sciences [6]-[8]. Al is adequate at finding
patterns in large datasets, combining sources of data such as reanalysis products, remote
sensing and surface-based observations, and making fast predictions[15]. In the rapid progress
the gap still clear to how understanding the Al dealing with traditional physical models in
practical life, previous reviews focused only the technical side without explanation the
fairness and governance sides. this review focus on gaps by academics analysis between 2019
and 2025. Recent advances include GraphCast, which dominates the high-resolution ECMWF
model over 90% of verification metrics [21], GenCast, outperforming ensemble forecasts with
inference times below ten minutes [22], and MetNet-2, that produces accurate precipitations
forecasts up to nine hours ahead [23].

Beyond Forecasting: Adaptation

Artificial intelligence applications are not limited to weather and climate forecasting and,
among others, include adaptation. This is an area where enhancing resilience to climate
change will be crucial. In agriculture, Al has been utilized to better forecast crop yields [43].
For water management, it gives alerts for droughts and floods [44], [47]. In [46] it is used for
predicting outbreaks of diseases associated with the climate in healthy populations. Within
urban planning, it enables communities to become more resilient to flood events and
heatwaves [48],[51]. Taken together, these apps illustrate the growing role of Al in connecting
scientific advances to public decisions.

Persistent Challenges
Although there was notable progress, the integration of Al into climate science is not without
challenges. Key limitations include:

e Data scarcity and bias, particularly in the Global South [52], [54].

e Lack of interpretability, as deep learning models often operate as “black boxes”
[56].

¢ Environmental costs, due to the high energy consumption required to train large-
scale models [58].
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o Equity concerns, since access to advanced Al technologies remains concentrated in
the Global North [59], [60].

Purpose of the Review
The aim of this review is to execute a systematic analysis and synthesize 70 peer-reviewed
papers in the period from 2019 to 2025 to answer three main questions:

1. In what ways is artificial intelligence better at predicting climate than simulations
based on the laws of physics?

2. What are the most effective uses of Al for climate change resilience?

3. What limitations and regulations are necessary to promote responsible use of these
technologies?

This paper offers a novel and structured attempt to critically synthesis this emerging literature
by empirically situating it in the context of Al for climate science according to three guiding
posts: sustainability, transparency and equity.

2. Methodology

The study was conducted in accordance with the Preferred Reporting Items for Systematic
Reviews and Meta-Analyses (PRISMA) guidelines [19]. We evaluated each study by the
methodology used and the model type such as CNN, LSTM, transformer and the performance
indicators like RMSE, AUC [20]. A literature search was carried out in IEEE Xplore,
ScienceDirect, SpringerLink, Scopus and arXiv from 2019 until 2025 to identify the latest
developments of Al applied to solve climate change challenges.

Inclusion criteria:

e Peer-reviewed articles and preprints that applied Al to climate forecasting or
adaptation.

e Quantitative performance evaluation (e.g., accuracy, root mean square error (RMSE),
area under the curve (AUC), critical success index (CSI), etc.).

e Studies published in English between 2019 and 2025.

o This help to ensure the ability to reuse the studies in selection process.
Exclusion criteria:

e Sources not published in English.

e Theoretical articles or commentaries lacking empirical results.

¢ Duplicates or studies not directly related to climate science.

Database search: A total of 1,132 publications were identified through the database search.
Following title and abstract screening, 214 studies were included in the review. After full text
screening, the total records reduced to 70 articles that were reviewed and classified under two
main domains: prediction and adaptation. In addition, several fundamental works on Al
architectures (LSTM [26], Transformer [27]) were added to provide procedural context.
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The studies were analyzed in three steps:

1. Classification of approaches, such as CNN, LSTM, GNN, Transformers, and hybrid
physics—Al models.

2. Comparison of results with traditional approaches, including ECMWF HRES and
GFS.

3. Critical evaluation of challenges, limitations, and research gaps.
3. Artificial Intelligence in Climate Forecasting

Al has seen outstanding improvement in climate forecasting, particularly in short-term now
casting, medium-range weather forecasting, and even seasonal-to-interannual climate
forecasts. Unlike exclusively physics-based models, Al is capable of utilizing heterogeneous
data sets and providing high-accuracy forecasts and radically reducing computation time
[21],[22], [24].

Before comparative results, the models must be contextualized. GraphCast leverages graph
neural networks (GNNs) to model physical relationships between atmospheric grids; GenCast
uses generative models to create ensemble predictions; FourCastNet uses Fourier Neural
Operators to make global forecasts; and MetNet-2 has been designed specifically for high-
resolution precipitation now casting. These are all distinct but complementary approaches
within Al-based climate modeling[29],[30].

Table I presents a summary of outstanding Al models developed over the past five years,
assessed for their forecasting horizon, training datasets utilized, performance metrics, and
stated outcomes. The particularly noteworthy aspect is that the models are not only faster but
also far superior to conventional numerical forecasting models, especially for medium-range
prediction and short-range precipitation forecast.

Table 1. Representative Al Models for Climate Forecasting

Model Task / Horizon | Dataset(s) Metric /| Advantage Ref.
Used Result
GraphCast Medium-range ERA5S 90% better | High multi- | [21]
(3-104d) skill vs. | variate skill
ECMWF
HRES
GenCast Probabilistic ERAS, 97% higher | Fast ensemble | [22]
<15d ECMWEF ENS | skill vs. ENS; | forecasts
inference <10
min
FourCastNet Medium-range ERA5S Comparable to | Extreme [29]
global NWP; 80,000% | efficiency
faster
MetNet-2 Nowcasting Radar + | Higher CSI up | Superior [23]
<12h Satellite to 9h precipitation
accuracy
DeepMind 1-10d global ERAS Reduced Generalizable [31]
NWP RMSE, transformer
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competitive
with HRES
ClimaX Representation CMIP6, Strong  zero- | Pre-training for | [33]
learning ERAS shot transfer climate tasks
Hybrid ENSO | ENSO seasonal | NOAA SST Lead times | Seasonal [35]
DL extended by 2— | predictability
3 months
CNN-LSTM Rainfall India obs. RMSE | 15% | Captures spatio- | [36]
prediction vs. NWP temporal links

From Table I, it can be seen that Al models have domain-specific strong points. MetNet-2 is
superior in short-term forecast of precipitation with better critical success index (CSI) scores
for a maximum of nine hours. GraphCast and GenCast both perform better than numerical
physics-based models for medium-range forecasts, and FourCastNet attains the level of
efficiency that cannot be matched by conventional models[32],[34]. Hybrid systems that
combine physical constraints with Al architectures show a lot of promise for forecasting
events like El Nino—Southern Oscillation (ENSO). However, these models often lack
interpretability and act like "black boxes," which is a concern for operational agencies [S5]—
[57]. The chosen model achieves high accuracy compared to traditional numerical methods
for short- and medium-term predictions. By using available data and physical explanations,
the hybrid approach brings together both physical and AI methods in this field.

To further illustrate comparative performance, Figure 1 summarizes the skill improvements
achieved by leading Al models relative to traditional numerical weather prediction.
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Figure 1. AI Models Versus NWP in Approaching the Performance Limit

As we can see from Figure 1, the Al-based methods always achieve higher precision on
various forecast horizons. These findings demonstrate the potential of Al as a supportive
methodology to physic-based model, particularly in short-to-medium-term predictions. But
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the problem of generalizing these improvements to low data regimes still persists. This
underscores the importance of hybrid models and tailored calibration.

Artificial Intelligence for Climate Change Adaptation

Although prediction continues to be an important component of climate science, adaptation is
the operational aspect of resilience in light . Artificial intelligence presents a new opportunity
to enhance adaptive capacity in sectors like agriculture, water management, public health and
urban planning. Contrary to global forecasting, adaptation is localized and context dependent
by its nature: social-economic, environmental and infrastructural data need to be factored in
joint [40], [43], [44].

A few case studies of how Al has been used to adapt in different regions and sectors are
shown in table (II). These cases provide evidence for the potential of machine learning
models, from Random Forests to hybrid network design like CNN-LSTM in improving early
warning systems efficiency and better allocating resources and decision support in climate-
sensitive sectors[46], [48].

Table (II). Representative Applications of Artificial Intelligence in Climate
Change Adaptation

Sector Al Method Region/Case | Data Used Result/Metri | Impact Ref.
c
Agriculture | LSTM Kenya Weather + Satellite 88% yield | Farmer [43]
(Maize) accuracy decisions
improved
Agriculture RF India (Wheat) | Obs. + Climate RMSE | 12% | Reliable wheat | [40]
forecasts
Agriculture CNN-LSTM Brazil MODIS + Climate R2=10.89 Food  security | [49]
(Soybean) planning
Water RF+LSTM India SPI + Soil Moisture | Early Drought [44]
(Drought) warning: +2 | preparedness
months
Water ANN Flood Bangladesh Gauge + Satellite Lead time | Flood warnings | [47]
+36h improved
Health XGBoost+SHAP Bangladesh Climate + | AUC=0.89 Early health | [46]
(Dengue) Epidemiology warnings
Health LSTM+Mobility Africa Climate + Mobility 85% accuracy | Better health | [50]
(Malaria) resource use
Urban CNN+RL Netherlands Radar + Hydro | 92% Flood-resilient [48]
models precision cities
Urban GNN+IoT China IoT + Weather +15% Smart city | [51]
(Heatwaves) detection adaptation
improvement

Table (II) shows how adaptive capacity is made reinforced significantly. Predictive yield
models are also utilized by farmers in agricultural settings assisting them to make more
informed decisions when it comes to plantation irrigation which in turn is directly related to
food security. Lead times obtained from Al driven systems are magnitudes more effective
than traditional methods. An example of this can be observed in the public health sector: Data
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driven epidemiological models that incorporate climate variables are effectively predicting
disease outbreaks and allowing for the better allocation of medical resources. Lastly,
infrastructure that is reinforced by Al systems must be utilized in urban settings because they
are more effective to help manage heat waves and in the management of floods. We can see
the studies shown local significant but the mostly applications have limitations and in
international scope. so the future works should focus on the Al models Can use with multi
regions strategy[38], [39].

Figure (2) adaptation studies discriminated throughout numerous sectors. This figure offers a
meta-analytic summary from the seventy sources examined.

Urban

Health

Agriculture

Figure (2). Sectoral Disaggregation of Artificial Intelligence based Climate
Adaptation Research

Early on, food security was a primary issue which was highlighted by climate change
research. Agriculture still being research in an extensive rate as Figure (2) clarifies. Thus,
adaptations that are a product of Al address issues at a larger scope within the public health
sector and urban systems. And while there are fewer water system studies, they often produce
very influential outcomes, because dealing with drought and flood is key to building climate
resilience.

Challenges and Limitations

While there has been some good progress, artificial intelligence isn’t exactly free and clear in
the climate science department. Key challenges The team identified five or six main
challenges: data quality, explain ability, environmental sustainability, justice and the problem
with bad governance. Knowledge of these limits is crucial[41],[42] and not only for
advancing the technical performance, but also to allow Al systems do their part in a
responsible climate action [52]-[63]. It has to be considered that the AI ability can’t be
equally distributed among the regions in order to address the computing gap. UNESCO
declared 2025 as the main step to ensure the presence of a researcher from the Global South
in climate research.
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Table III provides an overview of the most relevant technical and socio-political limitations
that are impeding a larger application of Al in climate science. Although individually these
problems have been addressed in the literature, cataloguing these together with some
suggested remedies points to potential ways forward.

Table (III). Challenges and Limitations of Artificial Intelligence in Climate Science with
Mitigation Strategies

Category Challenge Impact Evidence / Mitigation Ref.
Case Strategy
Data Sparse / Limits Africa: large Data [52],
biased generalization; station gaps augmentation, [54]
datasets poor regional fit | [54] downscaling,
citizen science
Data Short Weak long-term | ENSO Synthetic data [35]
historical training signals predictions generation, paleo-
records limited [35] climate
integration
Interpretability Opaque deep | Reduces trust for | Transformers Explainable Al [56],
learning operational use as black boxes | (SHAP, LIME), [57]
models [56] physics-informed
Al
Interpretability Limited Policy reluctance | Health Model cards, [57],
transparency | to adopt Al surveillance uncertainty [61]
forecasts models [61] quantification
Environmental High training | CO: emissions NLP model Green Al [58],
footprint equivalent to training case (efficient [68]
cars’ lifetime [58] architectures,
renewable HPC)
Equity Unequal Widening North— | Compute Cloud-based open | [59],
access to South divide concentration access, Al [60],
compute in North [59] capacity building | [70]
Governance Lack of Risk of misuse, OECD Al International [62],
regulation no accountability | policy report standards, [63]
[62] independent
audits

Table (III) illustrates the limitations of Al over technical, environmental, and justice levels.
Sparsity and biased data undermine generalizability, especially in sparsely realized regions
such as Africa. Deep learning models are hard to interpret, and it isunattainable to have total
faith in them. Large model training also requires a lot of energy and emissions, sometimes the
same as that of a car over its thorough lifespan. AS well, not all people have the same
capability to utilize enormous computers, and that makes the gap between poor and rich
countries even larger. Weak rules and laws mean Al can be misused without consequences.

Because of this, we need ways to improve data, make Al easier to understand (called
explainable Al), and use greener Al methods. We also need international rules to guide Al use.
For Al to effectively contribute to the mitigation of climate change, the following actions
must take place. Al has many possible applications in climate science, yet, several challenges
limit the technology from attaining its potential.
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In figure 3, I show these problems and how they connect to issues like missing data, hard-to-
understand models, weak rules, and unfair access. I also show possible solutions. This “two
sides of a coin” view shows that both technical fixes and policy changes are needed to solve
these problems.

Data Gaps & Bias

Data Augmentation & Downscaling

Interpretability
XAl (SHAP/LIME), Physics-informed Al

Environmental Footprint
Green Al & Renewable HPC

Equity (Access) Open Access & Capacity Building

Governance Standards, Model Cards & Audits

Figure (3). Challenges in Climate Science Using Artificial Intelligence and Their
Mitigation Strategies

Fragmented data, high training related carbon footprint, lack of interpretability, and
governance gaps are all oppositions which are not fixable one by one as illustrated by Figure
(3). They need to be smartly besieged through responses like downscaling methods and data
augmentation. Explainable Al facilitates systems interpretability. Green Al is aimed at
reducing the carbon impact of Al systems. Open-access initiatives directed equity.
International governance frameworks establish accountability standards. This framework
highlights the need to integrate technical innovation with systemic strategies to secure
responsible application.

6. Discussion and Future Directions

The literature considered demonstrates that artificial intelligence has already begun to reshape
climate science. Nevertheless, most of the applications are still in the prototype stage or
limited to specific datasets. Operational integration entails bridging gaps more than technical
performance including reproducibility, transparency, socio-economic integration, and
sustainability [65]—[70]. This review show the lack in the standards evaluation performance of
Al models in climate science. to expanding the scope like climate bench and create global
open dataset to enhancement the model and reuse ability in the researches.

The integration of Al in climate science cannot be claimed to be done without responsibility
principle alignment. Figure (4) illustrates responsible Al by the three interlinking pillars of
sustainability, transparency, and justice—each of which is paramount in ensuring that Al is
effective and ethical in supporting climate solutions.
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Table (IV). Research Gaps and Future Directions in Artificial Intelligence for Climate
Science

Gap Importance Future Direction Timeframe Example Ref.
Projects
Benchmarking | Lack of standard Expand Short-term ClimateBench [65]
metrics ClimateBench; (1-3 yrs) [65]
enforce
reproducibility
Long-range Weak Physics-informed Medium- Pangu-Weather, | [66]
skill decadal/seasonal transformers; term (3—7 ClimaX [33]
models hybrid Al+physics | yrs)
Extreme Poor Tail-focused loss Medium- GANSs for [37]
events representation functions; synthetic | term (3—7 rainfall [37]
extremes y18)
Socio- Narrow technical | Integrate climate + | Long-term UNDP [67],
economic focus health + economic (5-10 yrs) Al4Climate [70] | [70]
datasets
XALI for policy | Low transparency | Operationalize Short-term Interpretable [69]
SHAP/LIME in (1-3 yrs) ML [56], [57]
climate workflows
Green Al High carbon Renewable- Medium- Green Al [58],
footprint powered training; term (3—7 consortia [68] [68]
energy tracking yIs)
Governance Lack of oversight | Independent audits; | Long-term OECD, [62],
international (5-10 yrs) UNESCO Al [63]
standards ethics [62]

As Table (IV) indicates, short-term priorities should focus on benchmarking and
explainability to guarantee that Al models are reproducible and sufficiently transparent for

policy adoption. Medium-term priorities include addressing long-term forecasting and
extreme climate events, which require hybrid architectures grounded in physical principles
and synthetic data techniques. Long-term plans should focus on including social and

economic systems in Al models, using more eco-friendly Al methods, and setting up strong
rules for Al use. By connecting these ideas to ongoing projects like Climate Bench, UNDP’s
Al4Climate, and OECD governance rules, this review shows how research can guide real
world policies and technology.

Responsible Artificial Intelligence in Climate Science

The application of artificial intelligence in climate science cannot be regarded as achieved
without responsibility principle alignment. Figure (4) shows the framework of responsible Al
as three interdependent pillars: sustainability, transparency, and justice. All three pillars
constitute an essential component to ensure artificial intelligence has an effective and ethical
contribution towards addressing climate problems.
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Sustainability Transparency
(Green Al, Renewable HPC) (XAl, SHAP/LIME)

Equity
(Open Access, Capacity Building)

Figure (4). The Three Pillars of Responsible Artificial Intelligence in Climate Science

As shown in Figure (4), the intersection of sustainability, transparency, and justice forms the
core of responsible Al. Sustainability emphasizes energy efficiency and low-carbon
computing; transparency underscores the role of explainable Al in strengthening decision-
making; and justice guarantees broad and equitable global access. All in all, the above-
mentioned principles establish a framework which it stable when it comes to integrating
technological advancement while maintaining ethical governance and social responsibility.

7. Conclusion

A new emerging and Ever Improving tool, Al predicts and adapts to climate science.
GraphCast, GenCast, FourCastNet and MetNet-2 which are all Al tools used for forecasting
proved to be at the same level or even better than traditional models in most scenarios. They
are more accurate and are much faster than traditional models. With regards to adaptation, Al
has advanced prediction of crop yield, facilitated monitoring and triggered early warning
systems for floods and droughts, produced alerts on climate-sensitive epidemics and assisted
in drafting resilience plans for cities. Yet these possibilities come with caveats. Data poverty
and bias, especially in the Global South, limited action ability and interpretability of Al
systems which fosters distrust in decision-making environments, large-scale unsustainable
models, and the asymmetrical distribution of resources and the environmental footprint of
large-scale models as well as the challenges of justice while resources remain heavily
concentrated in the Global North. Leaving out these constraints unaddressed runs the risk that
Al could deepen inequalities rather than delete the gap. Below is the three pillars that pave the
way forward :

1- Employing sustainably conscious computing and renewable resources to run computing
will aid to lessen Al’s carbon footprint .

2- Incorporating responsible and reasonable Al (XAI) will try to shape confidence and
accountability .

3- To ensure global impartial access and reimbursements, providing democratized admission
to Al tools, data sets, and infrastructure will support Al impartiality.

123



University of Thi-Qar Journal

ISSN (print): 2706- 6908, ISSN (online): 2706-6894 * asol)
« LA g2
Vol. 20No.4 Dec 2025 A J ‘S

The Researcher views Al as a tool that aids and accelerates Physical climate science. Finally
this review provide balanced on the achievements and challenges of Al in climate sciences
the main requirements to create standard dataset and progress in models can be explainable .
to ensure the access to the computing resources to build Al can be responsible enhancing the
climate science. Through merging insights obtained from Physical models and socio-
economic systems and feeding them to Al; paves the path forward for a more impartial,
robust, and maintainable climate action in the coming decade.
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